開発成果報告書

放射能分析用

魚類 認証標準物質(粉末状·灰状)

JSAC 0781 (魚肉, U8 容器) JSAC 0782 (魚肉, 100 mL 容器) JSAC 0783 (魚肉, 1 L 容器)

JSAC 0784 (魚骨, U8 容器) JSAC 0785 (魚骨, 100 mL 容器)

2015年3月2日

公益社団法人 日本分析化学会

				頁
1.	はし	じめし		1
2.	開列	老の糸	圣緯	1
3.	計量	量トι	ノーサビリティ	3
4.	候褚	甫標⊻	単物質の調製	5
5.	Cs	134,	Cs-137及びK-40の放射能濃度	10
	5.1	均質	1111111111111111111111111111111111111	10
	5.2	共同	司実験の報告結果及び特性値の決定	17
	5.3	不确	雀かさの算出	18
6.	Sr-	90の	放射能濃度	23
	6.1	均質	1111111111111111111111111111111111111	23
	6.2	共同	司実験の報告結果及び特性値の決定	25
	6.3	不确	雀かさの算出	27
7.	標	隼物質	重の利用	29
8.	認記	正書		30
9.	結	吾		30
添付資	爭料	1	: 共同実験参加試験所が使用した参照標準の概略図(Cs-134, Cs-137, K-40)	33
添付資	科	2	: 魚類試料の調製について	34
添付資	科	3	: 共同実験参加試験所の測定条件と結果(Cs-134, Cs-137及びK-40)	40
添付資	科	4	: 共同実験参加試験所のその他測定条件(Cs-134, Cs-137及びK-40)	50
添付資	科	5	: 共同実験参加試験所のその他情報 (Cs-134, Cs-137及びK-40)	54
添付資	科	6	: Cs-134とCs-137測定値の関係について	68
添付資	科	7	:報告されたγ線スペクトル例	72
添付資	科	8	: 共同実験参加試験所の測定条件と結果(Sr-90)	77
添付資	料	9	: 共同実験参加試験所のその他測定条件(Sr-90)	86
添付資	科	10	:認証書	98

注:魚類の採取と解体についての詳細は、この報告書に含まず別冊とした.

目 次

開発成果報告書

放射能分析用 魚類 認証標準物質

JSAC 0781, 0782, 0783, 0784, 0785

1. はじめに

東日本大震災に伴う福島第一原子力発電所事故により発生した放射性物質による環境汚染の広がりは、国 民生活の様々な側面に大きな影響を与えている.土壌表面に降下した放射性物質は、表流水の移動などに伴 って分布状態を変え、住環境における外部被ばく線量に影響している.また、農地やその周辺に降下した放 射性物質は、農作物などに取り込まれて国民の内部被ばく線量の上昇を招く可能性が指摘されている.一方、 原子力発電所から直接漏洩した汚染水は潮流の影響も受けて海域に拡散された可能性もある.これらの影響 を受けた環境試料や食品中の放射性物質の量を正確に、かつ、迅速に測定する技術の開発は、放射能計測分 野に求められる使命である.特に食品分析については、より微弱な放射能を定量することが社会的なニーズ である.

分析値の信頼性を確保するには、測定対象物質の分析値を、類似の組成を持ち計量トレーサビリティが取 れた標準物質の分析値と比較することが必要である.このため日本分析化学会では、2011 年度から標準物質 委員会での議論や震災対応 WG の方針等を踏まえ、原発事故対応支援を考慮した放射能分析用標準物質の作 製を開始し、すでに2012 年 6 月 1 日に土壌標準物質の供給を行っている.

危急の対応が必要の中,2012年6月に放射能測定用標準物質開発が独立行政法人科学技術振興機構(以下 JSTと呼ぶ)の研究成果展開事業(先端計測分析技術・機器開発プログラム)の一つに採択され,武蔵大学 藥袋佳孝教授をチームリーダとして関連の標準物質開発を継続・促進することとなった.2012年度前期には, 9月の生産時期に間に合うように玄米標準物質を,後期には牛肉認証標準物質を開発した.2013年度からは, 大豆,しいたけ標準物質の開発を行ってきた.本報告は,2014年度に開発した魚肉・魚骨認証標準物質につ いてまとめたもので,放射能濃度の認証値は次のとおりである.特性値は関連分野の熟練試験所による共同 実験方式で決定された(認証基準日:2014-11-01).

魚肉

Cs-134	(62 ± 5) Bq/kg (A	k=2)
Cs-137	(196 ± 14) Bq/kg	(k=2)
K-40	(349 ± 29) Bq/kg	(k=2)

魚骨

Cs-134	(141 ± 10) Bq/kg	(k=2)
Cs-137	(445 ± 29) Bq/kg	(k=2)
K-40	(783 ± 43) Bq/kg	(k=2)
Sr-90	(11.5 ± 1.2) Bq/kg	(k=2)

2. 開発の経緯

(公社)日本分析化学会標準物質委員会では渋川委員より震災対応WGの方針を踏まえ,原発事故対応支援を考慮した放射能分析用標準物質の作製の提案がなされた.平井委員が候補標準物質の調達を行うととも

に、「放射能標準物質作製委員会」が平井委員長を中心に発足し土壌認証標準物質が開発された.その後、 JST の研究成果展開事業(先端計測分析技術・機器開発プログラム)「放射線計測領域」の平成 24~25 年 度の開発課題「放射能環境標準物質の開発」,及び平成 26 年度は継続課題として採択され,武蔵大学 薬袋 教授をリーダーとし,環境テクノス(株) 岩本氏をサブリーダーとする産学協同の体制が構築された.土壌標 準物質の開発を行った放射能標準物質作製委員会も継続し,両者は連絡を密にして,これらの標準物質開発 に携わった.これまで,玄米認証標準物質,牛肉認証標準物質(低濃度・高濃度),大豆認証標準物質(低濃 度・高濃度)及びしいたけ認証標準物質(低濃度・高濃度)の開発を終了した.今回は魚類(魚肉・魚骨) 認証標準物質の開発を行い,魚骨には Sr-90 の認証も行った.(株)環境総合テクノスにて魚の捕獲・乾燥・ 灰化を行い,得られた試料を環境テクノス(株)にて調製して候補標準物質とし,東京都市大学原子力研究所, (株)環境総合テクノス,埼玉大学にて均質性試験を実施した.

測定方法としては主に,我が国における放射能分析の代表的な指針である"平成4年改訂 文部科学省 放射能測定シリーズ7「ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー」"及び"平成15年改訂文部科学省 放射能測定法シリーズ2「放射性ストロンチウム分析法」"によることにした. 共同実験に参加した機関のリストを表1に示す.

試験所名称	分析核種
東京都市大学原子力研究所	Cs-134, Cs-137, K-40
東京都市大学工学部	Cs-134, Cs-137, K-40
明治大学理工学部	Cs-134, Cs-137, K-40
京都大学原子炉実験所	Cs-134, Cs-137, K-40
東京大学アイソトープ総合センター	Cs-134, Cs-137, K-40
茨城大学広域水圏環境科学教育研究センター	Sr-90
金沢大学理工研究域物質化学系	Sr-90
国立医薬品食品衛生研究所	Sr-90
気象研究所	Sr-90
福島県原子力センター	Sr-90
茨城県環境放射線監視センター	Sr-90
(公財)日本分析センター	Cs-134, Cs-137, K-40, Sr-90
(公社)日本アイソトープ協会	Cs-134, Cs-137, K-40
(一財)日本食品分析センター	Cs-134, Cs-137, K-40
(一財)九州環境管理協会	Sr-90
(独)産業技術総合研究所	Sr-90
(独)放射線医学総合研究所	Cs-134, Cs-137, K-40
(独)日本原子力研究開発機構先端基礎研究センター	Cs-134, Cs-137, K-40
(独)日本原子力研究開発機構バックエンド研究開発部	Sr-90
(神)農業環境技術研究所	Cs-134, Cs-137, K-40, Sr-90
(独)水産総合研究センター 中央水産研究所	Sr-90

表1 参加試験所リスト(順不同)

エヌエス環境株式会社	Cs-134, Cs-137, K-40
株式会社環境総合テクノス	Cs-134, Cs-137, K-40, Sr-90
日本ハム株式会社中央研究所	Cs-134, Cs-137, K-40
株式会社化研	Sr-90

3. 計量トレーサビリティ

(1) Cs-134, Cs-137, K-40

表2に参加試験所が用いた標準線源とその合成標準不確かさを示す.

表2 参加試験所が用いた標準線源と校正法に起因する	合成標準不確かさ
---------------------------	----------

Lab 番号	標準線源	検出効率校正の 相対標準不確かさ(%)	
1	日本アイソトープ協会製放射能標準ガンマ 体積線源 MX033U8PP	2.35	
2	Eu-152 線源及び K-40(KCl)	2.9	
4	日本アイソトープ協会製 混合核種点線源 (MX402 53)(U8 容器)及び日本アイソ トープ協会製 CS031U8PP	2.35	
5	日本アイソトープ協会製9核種混合 放射 能標準ガンマ体積線源(U8 容器)	ピーク効率の校正値として, 1.62 (Cs-134) 1.33 (Cs-137) 1.49 (K-40)	
6	日本アイソトープ協会製放射能標準ガンマ 体積線源 MX033U8PP(U8 容器)	2.35	
8	日本アイソトープ協会製放射能標準ガンマ 体積線源 MX033U8PP(U8 容器)	2.35	
10	日本アイソトープ協会製放射能標準ガンマ 体積線源 MX033U8PP(U8 容器)	2.35	
11	日本アイソトープ協会製放射能標準ガンマ 体積線源 MX033U8PP(U8 容器)	2.4	
12	JSAC 0771 (しいたけ(低濃度)認証標準 物質)	Cs-134 4.33 Cs-137 4.26 K-40 3.74	

14	Cs-134 及び Cs-137: 値付けされた溶液を秤 量し, 100 mL の水に滴下して作成 K-40:容量分析用水酸化カリウム溶液 100 mL 標準及び候補標準物質共に PE 製広ロビン に充填, ビンの側面を Ge 検出器(横型) の前面アクリルキャップに密着させて測定	2.0 (Cs-134) 2.0 (Cs-137) K-40 については学術的核データの不 確かさと計数誤差を合成した. 1.1 (K-40)	
15	日本アイソトープ協会製9核種混合標準溶 液(MX010-0017)を、アルミナ粉末と混合 し、U8容器に50mm高さで充填して作成	2.7	
16	日本アイソトープ協会製放射能標準ガンマ 体積線源 MX033U8PP(U8 容器)	2.35	
17	JSAC 0731(玄米認証標準物質)及び K-40 (KCl)	Cs-134 3.26 Cs-137 3.21 K-40 1.1	
18	日本アイソトープ協会製放射能標準ガンマ 体積線源 MX033U8PP(U8 容器)	2.5	

ピーク効率の校正の標準不確かさは、不確かさの報告がある場合はその値(Lab. 5, 11, 14 の Cs, 15)、 標準線源が報告されている場合はその拡張不確かさを包含係数(*k*=2)で割った値(Lab.1, 4, 6, 8, 10, 16, 18)を用いた. KOH との比較測定の場合は、K-40 核データから求めた標準不確かさ 1.1 %を用いた(Lab. 14 の K-40). Eu-152 線源を用いて効率曲線(直線近似)を求め, KCl を用いて校正した場合は、効率曲線

の標準不確かさを $\sqrt{\frac{1}{N-2}\sum_{i}\epsilon_{i}^{2}}$ から計算し, K-40の標準不確かさ 1.1%と合成して求めた (Lab. 2, 17).

ここで、 ε_i は直線近似の誤差(%)で、Nは測定点の数である.認証標準物質と比較測定が行われたときは、

認証値の相対合成標準不確かさを用いた(Lab.12).

魚肉と魚骨では参加試験所が一致していないので、それぞれに対して、参加試験所の相対標準不確かさの 平方和を計算し、試験所数で割りその平方根を検出効率校正の標準不確かさとした.

(2) Sr-90

用いられた標準液を表3に示す.なお、表中のlab番号は、表2の番号と異なる.

標準液名称	報告書番号との対応	拡張不確かさ(%)		
ロオマノソトニプ协会制	1 9 9 5 7 9 10	SR005 1.3 %		
ローイノトーノ励云衆	1, 2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15	SR010 3.3 %		
ストロンサリム標準俗版		SR050 1.2 %		
Isotope Products		証明書は発行されず、次のような説明がな		
Laboratories 7090 NIST	C	されている.		
traceable standard solution	6	The uncertainty value of the measured		
Sr-90 37 kBq		activity value for a NIST-traceable		

表3 参加試験所が用いた Sr-90 標準液と証明書記載の拡張不確かさ

calibration can theoretically be as low as $\pm 3\%$ at the 99% confidence level (k=2.58) but will be no greater than $\pm 5\%$ unless
otherwise noted elsewhere in our product
information.

日本アイソトープ協会製の標準溶液で拡張不確かさが異なるのは、校正時期の違いで、最近の標準溶液で は小さな不確かさで校正ができているためである.

また,NIST とレーサブル標準液の説明には、上記の表中の説明の他に、"Daaks(ドイツの認定機関)で認定された校正では、典型的には 95%信頼の水準で 3.0~3.5% である"とも記述されている.

これらの情報を考慮して、ここでは安全側の最も大きな値を採用することとし、日本アイソトープ協会製のストロンチウム標準溶液 SR010 に与えられる拡張不確かさ 3.3%を、標準液を代表する拡張不確かさと考え、それを2で割り標準液の標準不確かさとした.

報告データの詳細について,魚肉は添付資料 3~5 を,魚骨は Sr-90 のみについて添付資料 8,9 に掲載したので参照のこと.添付資料 1 に,魚肉について共同実験における放射能測定トレーサビリティの概念を,参考のため図示した.

4. 候補標準物質の調製

(1) 候補標準物質の概要

標準物質用試料としては、東日本太平洋沿岸海域で放射能汚染された生魚(コモンカスベ)合計 511 kg を解体し、頭部・尾部・内臓などを廃棄して肉部合計 164 kg、骨部合計 78 kg とした.引き続き乾燥を 行い、骨部についてはさらに灰化を行い、肉部乾燥量は合計 36 kg、骨部灰化量は合計 7 kg となった. 乾燥および灰化処理は以下の条件で実施した.

- ・乾燥:105 ℃で、重量変化が0.5%以下になるまで乾燥処理を実施
- (試料毎の乾燥期間は概ね2~3日間)
- ・灰化:500 ℃,48時間で灰化処理を実施

以上の作業は㈱環境総合テクノスで実施し、これ以降の調製作業は環境テクノス㈱で行った.

(2) 肉部乾燥試料の調製と瓶詰

粉砕は製粉機で行った.なるべく微粉(63 μm 未満)を出さないよう粗めに行い, 粒度が 1 mm 以上の試料は再粉砕を繰り返すことにより処理し,約 36 kg の試料を回収した.

写真1 製粉機

※ハンドルを全閉状態から開く方向(左)に 回転させることで粒度を調節可能(ハンドル を開くにつれ,粉砕粒度は粗くなる)

写真2 電磁振動篩い分け器 使用条件:連続振動5分間 振動強度8 試料投入量約100g/回

粉砕・分級を行った試料を撹翼式混合機(名称:パワーフル オート ミキサー 内容量:100 L 株 式会社ダルトン製)を用い予備混合を行った.

写真3 撹翼式混合機

予備混合後,230 L V 型混合機にて1時間一括混合を行った.混合後回収試料は計4つのステンレス容器に小分けして回収しそれぞれA,B,C,D とした. 【混合後回収量】:35.54 kg

写真 4 V 型混合機 内容量 230L 回転速度 31rpm(実測値)

容器 A, B, C, D の試料をスマートベクレルカウンターにて放射能測定を行った. 各袋から 200 g を抜き 出し,同一サンプルにて5回の測定を行った(測定時間 30 分). 濃度の総平均値は 274.3 Bq/kg であった. 麦4 放射能測定結果

	А	В	С	D	Cs 合計
1回目	251	300	248	275	Bq/kg
2回目	280	283	284	297	
3回目	244	288	261	294	
4回目	260	277	285	273	
5 回目	282	257	274	273	
平均值	263.4	281.0	270.4	282.4	
総平均値		274	4. 3		

写真4 スマートベクレルカウンター

この調製本試料を用い充てんテストを行った. U8 容器に充てんする際には図1に示すように数回に分けて試料を詰めていくとムラができ、見た目上不均質になることがある. そのため、図2に示すように山盛りに試料を入れ一度で押し固める充てん方法で実施する. また、U8 容器への充てんは 50 mm 高さにて行うため、ある程度の衝撃や振動等を与えても 50 mm 高さをキープできるような密度(充てん量 72g)

図1 数回に分けて試料を押し固める方法

図2 山盛りに試料を入れ一度で押し固める方法

小分け回収した試料を容器 A, B, C, D の順に, U8 容器 24本, 100 mL 容器 4本, 1 L 容器 2本の 繰返しで充てんを行い番号を付した.充てんと並行して各容器から任意にふたつの試料を採取し,乾燥 による質量減少を測定した.乾燥条件 105 ℃, 5h による質量減少は,表5のようで平均 2.6%であ った.

試料番号	乾燥前質量(A)/g	乾燥後質量(B)/g	減量(A-B)/g	(A-B)/A (%)	
A-1	6.009	5.859	0.150	2.50	
A-2	6.000	5.843	0.157	2.62	
B-1	6.003	5.858	0.145	2.42	
B-2	6.001	5.846	0.155	2.58	
C-1	6.003	5.863	0.140	2.33	
C-2	6.005	5.847	0.158	2.63	
D-1	6.000	5.829	0.171	2.85	
D-2	6.001	5.838	0.163	2. 72	

表5 105 ℃,5時間の乾燥による質量減少

(3) 骨部灰化試料の調製と瓶詰

粒度は 500 μm 以下とし, 微粉(63 μm 未満)をできるだけ少なくすることを目標とした.しかし, 灰化処理された試料を確認したところ, 未粉砕の状態において 63 μm 未満の粒子を含むことが確認されたため灰化した試料の粉砕を行わずに分級処理を行った.500 μm 以上の試料についてのみ短時間(数秒)フードミル粉砕を行った後分級を行い,なお 500 μm 以上の試料については極力 微粉を出さないよう再度短時間で粉砕を行い,この処理を繰り返した.表 6 に処理後の灰化試料量を示す.

衣 0	山政行里
$63\mu\mathrm{m}{\sim}500\mu\mathrm{m}$	63µm未満
約 6.3kg	約 0.6kg
(91%)	(9%)

主 c 調制公応ル封料具

処理後の試料を簡易的に袋にて混合後,2点からそれぞれ200gの試料を抜き出し、同一サンプルにて3回の放射能測定を行った(測定時間30分).

			_
	\bigcirc	2	Cs 合計
1回目	679	621	Bq/kg
2回目	649	634	
3回目	694	605	
平均値	674.0	620.0	
総平均値	647		

表 7 放射能測定結果

表7に示す測定結果より、灰化試料のCs濃度が650 Bq/kg程度であることが確認された.

粉砕・分級を行った試料を,魚肉時より小型の30LV型混合機にて1時間一括混合(回転速度32rpm (実測値))を行った.混合後試料はステンレス容器に回収した. 【混合後回収量】:6.9kg

この試料を U8 容器に 50 mm 高さになるよう 97 g 充てんを行ったが、微粒子が多いために取り扱い中 に上部にやや隙間ができることが判明した.

写真5 灰化試料 U8 容器充てんの様子

混合した試料を U8 容器 2本, 70 g 瓶 7本, 10 g 瓶 1本の繰返しで充てんを行い番号を付した. 充てんと並行して容器から任意に 8 個の試料を採取し,乾燥による質量減少を測定した.乾燥条件 105 ℃, 5h による質量減少は,表のようで平均 0.46%であった.

AC 100								
試料番号	乾燥前質量(A)/g	乾燥後質量(B)/g	減量(A-B)/g	(A-B)/A (%)				
1	2.008	1.999	0.009	0.45				
2	2.002	1.993	0.009	0.45				
3	2.005	1.997	0.008	0.40				
4	2.003	1.994	0.009	0.45				
5	2.004	1.994	0.010	0.50				
6	2.002	1.995	0.007	0.35				
7	2.006	1.996	0.010	0.50				
8	2.004	1.993	0.011	0.55				

表8 105 ℃,5時間の乾燥による質量減少

魚肉・魚骨について、充てんを行った試料量(質量と瓶数)は表9のようである.

		表	9	魚肉・	魚骨標準物	「質の充て	ん状況		
左 由		合計瓶		均質	国内共		国際共		制日田水料
魚 肉		数		恎武 験用	回美缺 用		回夫缺 用		聚而用残裂
	g/瓶	瓶数		瓶数	瓶数		瓶数		瓶数
72 g U8	0.072	240		24	13		9	放射性 Cs 用	194
74 g 瓶	0.074	45					0	放射性 Cs 用	45
740 g 瓶	0.74	20					1	放射性 Cs 用	19
合計質量	k kg	35							
魚骨		合計瓶 数		均質 性試 験用	国内共 同実験 用(U8 未開封)	国内共 同実験 用(U8 開封)	国際共 同実験 用		製品用残数
魚骨	g/瓶	合計瓶 数 瓶数		均 質 試 験 瓶 数	国内共 同実験 用(U8 未開封) 瓶数	国内共 同実験 用(U8 開封)	国際共 同実験 用 瓶数		製品用残数 瓶数_
魚骨 70 g 瓶	g/瓶 0.07	合計瓶 数 瓶数 58		均 質 試) 瓶 数	国内共 同実験 用(U8 未開封) 瓶数 14	国内共 同実験 用(U8 開封)	国際共 同実験 用 瓶数	放射性 Sr 用	製品用残数 瓶数 44
魚骨 70 g 瓶 70 g 瓶	g/瓶 0.07 0.07	合計瓶 数 瓶数 58 13		均性験 瓶数	国内共 同実験 用(U8 未開封) 瓶数 14	国内共 同実験 用 (U8 開封)	国際共 同実験 用 瓶数 13	放射性 Sr 用 放射性 Cs, Sr 用	製品用残数 瓶数 44 0
魚骨 70 g 瓶 70 g 瓶 10 g 瓶	g/瓶 0.07 0.07 0.01	合計瓶 数 瓶数 58 13 10		均 質 試 験 用 瓶 数 10	国内共 同実験 用(U8 未開封) 瓶数 14	国内共 同実験 用(U8 開封)	国際共 同実験 用 瓶数 13	放射性 Sr 用 放射性 Cs, Sr 用 安定 Sr 用	製品用残数 瓶数 44 0 0
魚骨 70 g 瓶 70 g 瓶 10 g 瓶 97 g U8	g/瓶 0.07 0.07 0.01 0.097	合計瓶 数 瓶数 58 13 10 20		均質 性験 瓶数 10 10	国内共 同実験 用(U8 未開封) 瓶数 14 8	国内共 同実験 用(U8 開封)	国際共 同実験 用 瓶数 13 0	放射性 Sr 用 放射性 Cs, Sr 用 安定 Sr 用 放射性 Cs 用	製品用残数 瓶数 44 0 0 19
魚骨 70 g 瓶 70 g 瓶 10 g 瓶 97 g U8	g/瓶 0.07 0.07 0.01 0.097	合計瓶 数 瓶数 58 13 10 20		均質 性 験用 瓶数 10 10	国内共 同実験 用(U8 未開封) 瓶数 14 8 実験後回収	国内共 同実験 用(U8 開封)	国際共 同実験 用 瓶数 13 0	放射性 Sr 用 放射性 Cs, Sr 用 安定 Sr 用 放射性 Cs 用	製品用残数 瓶数 44 0 0 19

滅菌:

瓶詰め後, Co-60γ線 10 kGy/h, 前面1時間, 後面1時間, 計2時間, トータル 20 kGy の照射条件で滅 菌処理を行った.

均質性試験に用いた瓶番号は次の通りである.

- ・魚肉放射能測定用(U8 容器): 19, 39, 59, 79, 99, 119, 139, 159, 179, 199, 219, 239
- ・魚肉 ICP-AES 用(U8 容器) : 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240
- ・魚骨安定性 Sr 測定用(10g 瓶) : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- ・魚骨放射能測定用(U8 容器) : 1, 3, 5, 7, 9, 11, 13, 15, 17, 19

5. Cs-134, Cs-137 及び K-40 放射能濃度

5.1 均質性の評価

5.1.1 魚肉部

(1) 概要

Cs-134 及び Cs-137 については放射能測定により, K-40 については放射能測定及び化学分析により, 共に 12 試料を用いて均質性評価を行った. 放射能測定は東京都市大学原子力研究所において行われた. 化学測定では, マイクロ波加熱分解した試料を ICP-AES により定量した. 測定は, 埼玉大学で行われた. 均質性評価の詳細を下記に記す.

(2) 放射能測定による均質性試験結果

Cs-134, Cs-137 及び K-40 の放射能は, それぞれ 604 keV, 661 keV, 1460.8 keV のピークを用いて測定された. 測定は 2014 年 11 月 14 日から 2015 年 1 月 1 日にかけて実施された. Cs-137 及び K-40 については, コベル法で計算された計数値をそのまま示した. 測定時間は 24 時間(86400 秒)である.

均質性試験の解析は充分な併行精度が確保できる場合次のように評価できる. すなわち、 s_{bb}を均質性

標準偏差, S_{h+r} を, 複数の試料を測定したときの測定値の標準偏差, S_r を併行精度(測定の繰返し標準偏差)

とすると、 s_{bb} は次式で求めることができる.

$$s_{bb}^2 = s_{b+r}^2 - s_r^2$$

 s_{bb}^2 が負になる場合は、便宜上その絶対値の平方根に負号をつけて s_{bb} を表示する.

表 10 に Cs-134 及び Cs-137 の評価結果,表 11 に K-40 の評価結果を示した.ネットカウントの平方根及 びベースラインの誤差を含めた計数誤差をそれぞれ計数誤差1と計数誤差2と表示している.放射能測定の 併行精度は計数誤差として測定カウント数の平方根で与えられることが分かっている.測定値の計数誤差を 表す場合はベースラインカウント数の計数誤差を加えているが,この計数誤差を*s*,に用いると均質性を過小 評価することが懸念される.計数誤差1は測定対象からの信号(カウント数)の理論的な誤差に相当し,推 定される最小の併行精度と考えられる.そこでここではベースラインによる計数誤差を含めないで単にネッ トカウントの平方根から計数誤差を計算し,それを用いて計算した*s*,*b*を不確かさとした.

また, K-40 については主にバックグラウンドの信号が重複するため,これを含めた解析を行った. バック グラウンドの信号と共に表 11 に示した.

$\cancel{\times}$ 10 US 154	$X \cup U = 101 \cup 1$	ルオードに則たによ	の均貝に時候加	木	半世・ハワマド数			
試料番号	Cs-134 ネットカウント	計数誤差1	計数誤差2	Cs-137 ネットカウント	計数誤差1	計数誤差2		
FM19	3092.0	55.61	58.73	8571.0	92.58	94.11		
FM39	3175.2	56.35	59.59	8611.2	92.80	94.30		
FM59	3050.2	55.23	58.19	8309.3	91.16	92.73		
FM79	3192.1	56.50	60.02	8777.2	93.69	95.23		
FM99	3225.8	56.80	60.08	8831.8	93.98	95.57		
FM119	3128.9	55.94	59.61	8845.6	94.05	95.36		
FM139	3039.4	55.13	58.35	8376.3	91.52	92.74		
FM159	3131.6	55.96	59.22	8456.2	91.96	93.35		
FM179	3203.0	56.60	59.56	8615.0	92.82	94.11		
FM199	3188.1	56.46	59.85	8433.4	91.83	93.23		
FM219	3060.4	55.32	59.08	8780.0	93.70	94.98		
FM239	3210.6	56.66	59.97	8705.0	93.30	94.62		
AVERAGE	3141.44	56.05	59.36	8609.33	92.79	94.20		
STDEV	67.13			183.90				
s _{b+r} (%)	2.14			2.14				
<i>s</i> _r (%)		1.78	1.89		1.08	1.09		
<i>s</i> _{bb} (%)		1.18	1.00		1.84	1.83		

表 10 Cs-134 及び Cs-137 の放射能測定による均質性試験結果

単位:カウント数

表 11 K-40 の放射能測定による均質性試験結果					単位:	: カウント教	数	
試料番号	Ν	Nb	N'	Nb'	√ (N+Nb+N'+Nb') / ((N-Nb)-(N'-Nb'))	ネット カウン ト	計数誤 差1	計数誤 差2
FM19	1137	64.8	106.8	8.2	3.73%	973.60	31.20	36.29
FM39	1205	52.0	106.8	8.2	3.51%	1054.40	32.47	37.04
FM59	1103	46.4	106.8	8.2	3.71%	958.00	30.95	35.56
FM79	1175	47.4	106.8	8.2	3.55%	1029.00	32.08	36.57
FM99	1100	41.8	106.8	8.2	3.69%	959.60	30.98	35.45
FM119	1089	50.1	106.8	8.2	3.77%	940.30	30.66	35.41
FM139	1056	46.4	106.8	8.2	3.83%	911.00	30.18	34.89
FM159	1182	45.1	106.8	8.2	3.53%	1038.30	32.22	36.63
FM179	1130	49.2	106.8	8.2	3.66%	982.20	31.34	35.97
FM199	1127	39.0	106.8	8.2	3.62%	989.40	31.45	35.79
FM219	1135	62.2	106.8	8.2	3.72%	974.20	31.21	36.22
FM239	1122	48.3	106.8	8.2	3.68%	975.10	31.23	35.85
AVERAGE	1130.08	49.4	106.8	8.2	3.7%	982.09	31.34	35.98
					STDEV	41.24		
					<i>s</i> _{b+r} (%)	4.20		
					<i>s</i> _r (%)		3.19	3.66
					s _{bb} (%)		2.73	2.05

表 11 K-40 の放射能測定に上ろ均質性試驗結果

表 11 の N, N_bは, それぞれ試験試料のベースラインを含むピークのカウント数及びベースラインのカウ ント数で、N'、Nb'は別途測定された測定環境におけるバックグラウンドによる信号の全体及びベースライン のカウント数である(添付資料3を参照).

K-40の測定値の相対計数誤差は一般に次式で表され、計数誤差2と同等である.

K-40の相対計数誤差=√(N+Nb+N'+Nb')/((N-Nb)-(N'-Nb'))

表 11 に計算した結果を示すが、 s_{b+r} として 4.20 %と得られ、 $s_{bb}^2 = s_{b+r}^2 - s_r^2$ の関係からから計数誤差 1 を用いて均質性の標準不確かさを計算すると2.73%と得られた.

- (3) K 元素化学分析による均質性試験
- 1) 試薬

硝酸(68% TAMAPURE-AA-100) 多摩化学工業製 カリウム標準液(1000 ppm 原子吸光用) 関東化学工業製 イットリウム標準液(1000 ppm 原子吸光用) 関東化学工業製

2) 試料溶液調製法

① 魚肉試料(粉末状)をおよそ 0.25 g を精秤し,加熱分解容器に入れ,硝酸 8 mL を加える.

② マイクロ波加熱分解装置(マイルストーンゼネラル社製 ETHOS PRO)で、以下の温度プログラムにより加熱分解後、分解溶液を PFA 製 100 mL ビーカーに移し、200 ℃のホットプレート上で蒸発乾固直前まで加熱する(表 12).

Step	時 間	出力	温度
	(分)	(W)	(°C)
1	2	1000	50
2	3	0	30
3	25	1000	180
4	1	0	150
5	4	1000	180
6	15	1000	180
合計	55 分(終了	了後の排気5分	を含む)

表12 マイクロ波加熱分解温度プログラム

- ③ 1 %硝酸溶液 25 mL を加え, 160 ℃のホットプレートで 5~10 分間加熱して残渣を溶かし、メン ブランフィルター((OMNIPORE: 孔径 0.45 µm, 直径 25 mm, メルクミリポア製)を用いて吸引ろ 過したのち,内標準として 10 ppm Y 溶液を 50 µL 加え, 1 %硝酸溶液で 50 mL 定容とし測定溶液と する.
- 3)カリウムの測定

上記の方法で調製した魚肉分解溶液中のカリウム濃度の測定には, ICP-AES (エスアイアイ・ナノテクノロジー(株)製 SPS 3100)を用いた.測定条件を以下に示す.

・RF 出力・・・1.2 kW
・Ar ガス流量 プラズマガス・・・16.0 L/min 補助ガス ・・・ 0.6 L/min キャリアガス・・・ 0.45 L/min
・サンプル導入量・・・ 2.5 mL/min
・測定波長 K: 769.90 nm Y: 371.03 nm (内標準)

得られた結果から,以下の式によって魚肉試料中の K 濃度を算出する. 魚肉試料中の K(mg/g) = 測定溶液中の K 濃度(mg/L) × 0.05 (L) / 試料質量(g) 結果を表 13 に示した.

表13 K元素の化学分析結果

試料番号	試料重量(g)	試料中の濃度 (mg/g)	平均值(mg/g)	標準偏差(mg/g)	
20	0.2912	12.06	12 188	0.170	
20	0.2400	12.31	12.100	0.179	
40	0.2890	11.96	11 078	0.031	
40	0.2783	12.00	11.978	0.031	
60	0.3101	11.79	12.211	0.594	

	0.2315	12.63			
80	0.2430	12.82	12 464	0.502	
80	0.2304	12.11	12.404	0.302	
100	0.2549	11.98	11.061	0.026	
100	0.3064	11.94	11.901	0.020	
120	0.2715	11.74	12 255	0.720	
120	0.2210	12.77	12.233	0.729	
140	0.2441	12.33	12 252	0.020	
140	0.2837	12.37	12.353	0.030	
160	0.2237	12.30	12 209	0.006	
100	0.2508	12.31	12.308	0.000	
190	0.2674	11.23	12.024	1 1 2 5	
180	0.2836	12.82	12.024	1.125	
200	0.2691	11.92	12 207	0.402	
200	0.2179	12.49	12.207	0.402	
220	0.2546	13.89	12 222	0.028	
220	0.2897	12.57	13.232	0.938	
240	0.2890	10.48	11 447	1 270	
240	0.2481	12.42	11.44/	1.370	

表 14 には一元配置分散分析による評価結果を示す. なお,同一溶液を 2 回測定したケースについては最初の測定の測定値を,3 溶液の測定を行った時は最初の二つを用いた.

表 14 分散分析結果

採用	したデ	ータの	平均と	・分散
1/1/11		/ */	1	

	ノットウモカ版	•		
試料番号	標本数	合計	平均	分散
20	2	24.37	12.185	0.03125
40	2	23.96	11.98	0.0008
60	2	24.42	12.21	0.3528
80	2	24.93	12.465	0.25205
100	2	23.92	11.96	0.0008
120	2	24.51	12.255	0.53045
140	2	24.7	12.35	0.0008
160	2	24.61	12.305	5E-05
180	2	24.05	12.025	1.26405
200	2	24.41	12.205	0.16245
220	2	26.46	13.23	0.8712
240	2	22.9	11.45	1.8818
		平均值	12.2183333	

分散分析表

変動要因	変動	自由度	分散	観測された 分散比	P-値	F 境界値
試料間	3.72623333	11	0.33874848	0.76002278	0.67169989	2.71733144

合計 9.07473333 23

分散分析表から均質性標準偏差は次式で得られる.

$$s_{bb}^2 = \frac{MS_{among} - MS_{within}}{n} = -0.053$$

ここで、 MS_{among} は試料間分散、 MS_{within} は試料内分散を表す.計算すると s_{bb}^2 が負になるため、JIS Q 0035 7.9 項の「測定方法の併行精度が不十分な場合」に相当すると考え、 u_{bb} を次式により計算する.

$$u_{bb}^2 = s_{bb}^2 + \frac{s_r^2}{n} = 0.169$$

従って、相対均質性不確かさとして次の値が得られる.

 $u_{bb} = \sqrt{0.169} \times 100 / 12.22 = 3.37 (\%)$

(4) 均質性試験に基づく不確かさの推定

放射能測定による均質性評価では過小評価を避けるために計数誤差1を用いた Shb の値を用いる.表5か

ら計数誤差1を用いた Cs-134 及び Cs-137 の均質性の相対不確かさはそれぞれ 1.18 %, 1.84 %と近い値が 得られたが,大きい方の値 1.84 %を Cs-134 及び Cs-137 の共通の均質性不確かさとして使用する.

K-40 の均質性不確かさについては放射能測定で 2.73 %, 化学分析では 3.37 %と得られた.化学分析に おける分散分析の結果をみると, s_{bb}^2 が負となっており,正確な評価ができていないと考えられる.したが って,ここでは放射能測定の結果を用い, K-40 の均質性標準不確かさとして 2.73 %を採用する.

5.1.2 魚骨部

(1) 概要

Cs-134, Cs-137 及び K-40 について放射能測定により U8 容器に充てんした 10 試料を用いて均質性評価 を行った.測定は(株)環境総合テクノスにおいて実施された.

(2) 放射能測定による均質性試験結果

測定は 2014 年 11 月 13 日から 11 月 27 日にかけて実施された.

データの処理については、魚肉部と同様に行なった. Cs-134 及び Cs-137 の結果を表 15, K-40 の結果を表 16 に示した.

単位:カウント数

試料番号	Cs-134 ネットカウント	計数誤差1	計数誤差2	Cs-137 ネットカウント	計数誤差1	計数誤差2
No.1	10921.3	104.51	108.23	31217.5	176.68	178.34
No.3	10924.1	104.52	108.48	31493.5	177.46	179.11

表 15 Cs-134 及び Cs-137 の放射能測定による均質性試験結果

No.5	10674.7	103.32	107.30	31001.5	176.07	177.74
No.7	10968.5	104.73	108.36	31197.2	176.63	178.31
No.9	10641.5	103.16	106.93	30780.9	175.44	177.16
No.11	10686.4	103.38	107.33	31010.9	176.10	177.78
No.13	10830.0	104.07	108.02	30963.8	175.97	177.67
No.15	10804.5	103.94	107.78	31062.9	176.25	177.80
No.17	11314.4	106.37	110.20	32392.1	179.98	181.56
No.19	10510.3	102.52	106.20	30738.3	175.32	176.93
AVERAGE	10827.57	104.06	107.89	31185.86	176.60	178.24
STDEV	224.62			476.58		
s _{b+r} (%)	2.07			1.53		
<i>s</i> _r (%)		0.96	1.00		0.57	0.57
s _{bb} (%)		1.84	1.82		1.42	1.42

表16 K-40の放射能測定による均質性試験結果

単位:カウント数

0.75

0.58

試料番号	Ν	Nb	N'	Nb'	√ (N+Nb+N'+Nb') / ((N-Nb)-(N'-Nb'))	ネット カウン ト	計数誤 差1	計数誤 差2
No.1	4133	110.6	68.7	6.0	1.66%	3959.70	62.93	65.71
No.3	4156	104.1	68.7	6.0	1.65%	3989.20	63.16	65.84
No.5	4079	87.9	68.7	6.0	1.66%	3928.40	62.68	65.13
No.7	4021	122.8	68.7	6.0	1.69%	3835.50	61.93	64.95
No.9	4070	97.5	68.7	6.0	1.67%	3909.80	62.53	65.13
No.11	4027	71.2	68.7	6.0	1.66%	3893.10	62.39	64.60
No.13	4049	104.8	68.7	6.0	1.68%	3881.50	62.30	65.03
No.15	4049	119.1	68.7	6.0	1.68%	3867.20	62.19	65.14
No.17	4182	98.0	68.7	6.0	1.64%	4021.30	63.41	65.99
No.19	3969	110.1	68.7	6.0	1.70%	3796.20	61.61	64.45
AVERAGE	4073.50	102.6	68.7	6.0	1.7%	3908.19	62.52	65.20
					STDEV	69.01		
					<i>s</i> _{b+r} (%)	1.77		
					S-(%)		1.60	1 67

(3) 均質性試験に基づく不確かさの推定

ここでも計数誤差1を用いた Sbb の値を用いる.表5から計数誤差1を用いた Cs-134 及び Cs-137の均質

 s_{bb} (%)

性の相対不確かさはそれぞれ 1.84 %, 1.42 %とほぼ等しい値が得られたが, 大きい方の値 1.84 %を Cs-134 及び Cs-137 の共通の均質性標準不確かさとして使用する.

K-40の均質性不確かさについては放射能測定で0.75%と小さく、十分な併行精度が得られていると考えられるのでこの値をK-40の均質性標準不確かさとする.

5.2 報告結果及び特性値の決定

共同実験においては、候補標準物質を環境テクノスで U8 に詰めたものを測定した.参加試験所の測定値 と測定条件をまとめて添付資料 3, 4, 5 に示す.次節以降,表 17 及び表 18 に、それぞれ魚肉部及び魚骨部 の報告値と z スコア計算結果をまとめた. z スコアは従来法(Classic)及びロバスト法(Robust)により求 めた. ここで

Average: 平均値SD : 室間再現標準偏差RSD: 100×SD/AverageMedian: 中央値NIQR : 標準化四分位範囲 (0.7413×四分位範囲で、ロバストな室間再現標準偏差)RNIQR: 100×NIQR/MedianClassic z score: (x - Average) / SD x は各試験所の報告値 Robust z score: (x - Median) / NIQR

従来法による zスコアで3を越える報告値がなかったためデータの棄却は行わなかった(Cs-134とCs-137の報告値の分布状況は添付資料6のユーデン図を参照). 添付資料3,4,5に見るように測定条件で技術的に 問題と思われる試験所はなく、本共同実験の報告値の評価には従来法による平均と標準偏差を用いる.特性 値には平均値を用いた.

JIS Z 8404-1:2006 (ISO 21748:2010)「測定の不確かさ-第1部:測定の不確かさの評価における併行精度, 再現精度及び真度の推定値の利用の指針」に基づき,次項で述べる不確かさに加え,室間再現標準偏差(表 6の SD)も「もう一つの不確かさ」として認証書に記載する.

注: JIS Z 8404-1 は現 ISO の旧版 ISO/TS 21748:2004 の翻訳規格.

表中の測定値では報告値をそのまま記載した. 試験所番号(Lab)について一部不連続となっているのは, 既 開発の土壌, 玄米標準物質の際の共同実験参加試験所の番号を引き継いでいるためである.

試験所によっては、均質性試験とかねて複数の候補標準物質を測定していただいた.その場合は、事前に 特定した試料の結果を共同実験用に採用した.

添付資料7には、報告されたγ線スペクトルの一部を示した.

5.2.1 魚肉部

表17 報告値及び z スコア計算値

報告値の単位: Bq/kg

		/ FI/I						948	
lah	核種	z so	core	核種	z so	eore	核種	z sc	ore
180	Cs-134	classic	robust	Cs-137	classic	robust	K-40	classic	robust
1	67.63	1.45	1.40	206.49	1.44	1.90	330.59	-0.99	-1.38
2	57	-1.61	-2.06	183	-1.67	-1.90	356	0.33	0.24
4	60	-0.71	-1.04	190	-0.77	-0.80	340	-0.50	-0.77
5	63.4	0.24	0.03	194.8	-0.13	-0.02	363.9	0.76	0.77
6	60.8	-0.47	-0.77	191	-0.62	-0.62	350	0.05	-0.10
8	63.16	0.19	-0.03	197.0	0.17	0.34	351.9	0.13	0.00

10	64.1	0.45	0.27	195	-0.10	0.02	352	0.13	0.00
11	61.7	-0.23	-0.50	191	-0.63	-0.64	331	-0.97	-1.35
12	56.0	-1.84	-2.32	187	-1.23	-1.37	313	-1.93	-2.52
14	66.8	1.22	1.13	200	0.57	0.84	380	1.61	1.81
15	63.5	0.28	0.08	197	0.17	0.34	382	1.71	1.94
16	66.7	1.19	1.10	209	1.78	2.31	356	0.34	0.26
17	64.5	0.57	0.41	205.2	1.27	1.69	353	0.19	0.07
18	59.8	-0.76	-1.11	193.8	-0.26	-0.18	333.3	-0.85	-1.20
データ数 p	14			14			14		
Average	62.497			195.73			349.47		
SD	3.54			7.46			19.01		
RSD	5.66			3.81			5.44		
SD/√p	0.95			1.99			5.08		
RSD/√p	1.51			1.02			1.45		
Median	63.26			194.90			351.95		
NIQR	3.12			6.10			15.52		
RNIQR	4.9			3.1			4.4		

5.2.2 魚骨部

表 18 報告値及び Zスコア計算値

報告値の単位: Bq/kg 核種 核種 z score z score 核種 z score Lab Cs-137 classic Cs-134 classic robust robust K-40 classic robust 130 -1.84 -3.00 430 -1.23 -0.92 760 -0.93 -1.26 4 5 140.99 -0.02 0.30 442.56 771.69 -0.21 0.01 -0.46 -0.72 140 -0.25 -0.13 442 -0.23 0.00 765 -0.74 -1.04 6 -0.48 8 435.9 -0.75 0.00 137.8 -0.55 -0.66 787.4 0.16 10 144 0.48 1.20 454 0.71 0.86 794 0.42 0.30 140 -0.18 0.00 435 -0.82 -0.55 747 -1.44 -1.86 11 14 152 1.81 3.60 455 0.79 0.94 794 0.42 0.30 16 146 0.81 1.80 470 1.99 2.06 830 1.85 1.96 18 139.5 -0.26 -0.15 442.2 -0.24 -0.01 801.0 0.70 0.63 データ数 p 9 9 9 445.23 783.32 Average 141.10 12.42 25.20 SD 6.04 RSD 4.28 2.79 3.22 SD/√p 2.01 4.14 8.40 RSD/√p 1.43 0.93 1.07 140.00 442.40 787.40 Median NIQR 3.34 13.42 21.68 RNIQR 2.4 3.0 2.8

5.3 不確かさの算出

Cs-134, Cs-137 及び K-40 については、これまでの認証標準物質と同様の手順を用いて不確かさを算出し

た(例えば、しいたけ認証標準物質質の開発成果報告書を参照のこと). すなわち、合成標準不確かさは、共同実験の平均の標準不確かさ、参加試験所が用いた検出効率の校正の標準不確かさの二乗平均、自己吸収補 正の標準不確かさ、均質性試験から推定された標準不確かさを合成して算出した. 拡張不確かさを算出する 包含係数として *k*=2 を用いた.

表19に魚肉部,表20に魚骨部の結果をまとめた.

		Cs-134	Cs-137	K-40
不確	産かさ要因(相対値)	%	%	%
	共同実験	1.51	1.02	1.45
	検出効率校正	2.60	2.58	2.49
	自己吸収補正	1.00	1.00	1.00
	均質性	1.84	1.84	2.73
相	対合成標準不確かさ	3.67	3.48	4.09
相対拡張不確かさ(k=2)		7.33	6.95	8.19
	拡張不確かさ(<i>k</i> =2)	4.58 Bq/kg	13.61 Bq/kg	28.61 Bq/kg

表19 魚肉部の不確かさの要因と算出値

表 20 魚骨部の不確かさの要因と算出値

		Cs-134	Cs-137	K-40
不確	寉かさ要因(相対値)	%	%	%
	共同実験	1.43	0.93	1.07
	検出効率校正	2.27	2.25	2.19
	自己吸収補正	1.00	1.00	1.00
	均質性	1.84	1.84	0.75
相	対合成標準不確かさ	3.40	3.21	2.74
相対拡張不確かさ(<i>k=2</i>)		6.80	6.42	5.47
	拡張不確かさ(k=2)	9.60 Bq/kg	28.57 Bq/kg	42.88 Bq/kg

認証書に記載する拡張不確かさは次の通り.

魚肉部

魚骨部

Cs-134	5 Bq/kg
Cs-137	14 Bq/kg
K-40	29 Bq/kg
Cs-134	10 Bq/kg
Cs-137	29 Bq/kg
K-40	43 Bq/kg

ここで、拡張不確かさは、合成標準不確かさに信頼の水準約 95%に相当する包含係数 k=2を乗じた値である.

図 3~5, 図 6~8 に魚肉及び魚骨中の各核種の認証値と測定値の分布を示す.一部の測定値に付されたエラーバーは報告された拡張不確かさである.

図3 魚肉中のCs-134の認証値と測定値の分布

図4 魚肉中の Cs-137 の認証値と測定値の分布

図5 魚肉中の K-40 の認証値と測定値の分布

図6 魚骨中のCs-134の認証値と測定値の分布

図7 魚骨中の Cs-137 の認証値と測定値の分布

図8 魚骨中の K-40 の認証値と測定値の分布

6. Sr-90 放射能濃度

6.1 均質性の評価

(1) 概要

魚骨試料の数が十分に確保できていないこと及び Sr-90 の分析が大きな労力を伴うことから,魚骨試料中の Sr-90 の均質性の評価に対して異なる成分を用いて行なうこととなった.ここでは,安定 Sr の分析値を 用いて均質性の評価を行なう. 試料数は 10 個で,分析は環境総合テクノスで実施された.同時に実施された Ca 分析結果を合わせて,次に分析手順と結果を記す.

(2) 安定 Sr 及び Ca の定量分析手順

1) 使用試薬

試薬名	濃度	等級	試薬会社
硝酸	60 %	有害金属測定用	和光純薬工業株式会社
過塩素酸	60 %	特級	和光純薬工業株式会社
ストロンチウム標準液	1000 ppm	金属測定用	和光純薬工業株式会社
カルシウム標準液	1000 ppm	金属測定用	和光純薬工業株式会社
イットリウム標準液	1000 ppm	金属測定用	和光純薬工業株式会社

2) 試料溶液調製方法

①魚骨粉末をおよそ 0.5g 秤量し,硝酸 20 mL 添加しホットプレートで 8 時間約 120 ℃で加熱
 ②放冷し,硝酸 1 mL+過塩素酸 1 mL を添加し分解液を 140 ℃で加熱(7 時間)
 ③分解液を乾固後,硝酸 5 mL 添加し溶解(残渣あり)

④溶液を 0.80 µm のメンブレンフィルターでろ過,100 mL メスフラスコで定容し測定溶液とする.
3) 測定条件

使用装置		ICP-AES : Ther	rmo製 iCAP7400
	RF 出力	1.3	k₩
	プラズマガス	12	L/min
Ar ガス流量	補助ガス	0.5	L/min
	キャリアガス	0.6	L/min
サン	イプル導入量	50	Rpm
	Sr	421.552	Nm
測定波長	Са	317.933	Nm
	Y (内標) 10 ppm	371.03	Nm

(3) 分析結果

表 21 安定 Sr 及び Ca の分析結果

1 1 2 11 2	2010 - 20		
試料番号	試料重量(g)	Sr(mg/kg)	Ca(mg/kg)
	0.5123	2440	315400
1	0.5093	2438	319000
	0.5012	2508	333200
2	0.5033	2468	330300
	0.5002	2448	328200
3	0.5008	2419	311300
	0.5005	2499	322200
4	0.5001	2461	327100
5	0.5001	2503	331700

	0.5007	2513	323600
	0.5007	2450	318200
6	0.5007	2539	332200
	0.5001	2462	328500
\bigcirc	0.5001	2464	321100
	0.5004	2471	319700
8	0.5006	2444	321000
	0.5003	2466	320100
9	0.5001	2500	321200
	0.5004	2514	323000
10	0.5004	2452	323800
	平均值(mg/kg)	2472.95	323540.00
	標準偏差(mg/kg)	31.84	5855.31
	相対標準偏差(%)	1.29	1.81

(4) 安定 Sr 分析結果の分散分析結果

表 22 分散分析結果

採田	したデー	-タの	亚均レ	分散
1/1/11		/ //	T-MC	JIK

1/1/13 0101	1 3 2 73	123		
試料番号	標本数	合計	平均	分散
1	2	4878	2439	2
2	2	4976	2488	800
3	2	4867	2433.5	420.5
4	2	4960	2480	722
5	2	5016	2508	50
6	2	4989	2494.5	3960.5
$\overline{\mathcal{O}}$	2	4926	2463	2
8	2	4915	2457.5	364.5
9	2	4966	2483	578
10	2	4966	2483	1922
		平均值	2472.95	

分散分析表

変動要因	変動	自由度	分散	観測され た分散比	P-値	F 境界値
グループ間 グループ内	10435.45 8821.5	9 10	1159.4944 882.15	1.314396	0.3366201	3.0203829
合計	19256.95	19				

分散分析表から均質性標準偏差は次式で得られる.

$$s_{bb}^2 = \frac{MS_{among} - MS_{within}}{n} = 138.7$$

ここで、 MS_{among} は試料間分散、 MS_{within} は試料内分散を表す. s_{bb} は次のように求められた.

$$s_{bb} = \sqrt{138.7 \times 100/2472.95} = 0.48(\%)$$

(5) 均質性不確かさ

作成された試料量の不足から, Sr-90 の均質性試験を実施することはできなかった. そこで, 関係する測 定値から Sr-90 の均質性を推定することとした.

安定 Sr の均質性として,0.48%が得られた.一方,5.1.2節に記述したように,Sr-90と同時に生成 された放射性元素である魚骨中の Cs-134 及び Cs-137 の均質性の評価では,それぞれ 1.84 %, 1.42 %と得 られた.

安定 Sr と Sr-90 では起源が異なるため同一挙動を示さないと考えられるが,発生起源が同じと考えられる Sr-90 と Cs 核種では相関することが期待できる.したがって,ここでは Cs 核種に対して得られた最も大きい値, 1.84 %を Sr-90 放射能濃度の均質性標準不確かさとした.

6.2 報告結果及び特性値の決定

共同実験においては、候補標準物質を環境テクノスで瓶詰めしたものを測定した.参加試験所の測定値と 測定条件をまとめて添付資料 8,9 に示す.表 24 に報告値と z スコア計算結果をまとめた. z スコアは従来 法 (Classic) 及びロバスト法 (Robust) により求めた.表中の用語は 5.2 節に説明した.

従来法による z スコアで3を越える報告値がなかったためデータの棄却は行なわず、本共同実験の報告値の評価には従来法による平均と標準偏差を用いる.

JISZ 8404-1:2006 (ISO 21748:2010)「測定の不確かさ-第1部:測定の不確かさの評価における併行精度, 再現精度及び真度の推定値の利用の指針」に基づき,次項で述べる不確かさに加え,室間再現標準偏差(表 6の SD)も「もう一つの不確かさ」として認証書に記載する.

注: JIS Z 8404-1 は現 ISO の旧版 ISO/TS 21748:2004 の翻訳規格.

Sr-90 放射能濃度の測定では、Sr 成分を分離するプロセスで安定 Sr の濃度が必要になる. Ca は主成分で あるが、その量は先の分離プロセスの効率に影響する. このため、参加試験所から報告されたこれらの濃 度の平均値と標準偏差(表 23 に示した)を、認証書に参考値として記載することとした.

	試		核種 Sr-	-90 B	q/kg		安定 Sr mg/kg				Ca mg/kg					
lab	料	S-1 - 1 - 1 - 1	z score					z score					z score			
	量 g	測定值 1	測定値2	平均値	classic	robust	測定値 1	測定値2	平均值	classic	robust	測定值1	測定値2	平均值	classic	robust
1-1	20	11.1	11.0	11.1	-0.19	-0.62	2280	2285	2283	-0.67	-0.95	283250	280500	281875	-1.78	-3.53
1-2	20	11.6	11.4	11.5	-0.01	-0.33	2280	2285	2283	-0.67	-0.95	283250	280500	281875	-1.78	-3.53
2	35	12	12	12.2	0.33	0.23	2390	2440	2415	-0.01	-0.14	314000	316000	315000	0.72	0.42
3	10	11.0	12.1	11.6	0.03	-0.26	2400	2400	2400	-0.09	-0.23	310000	310000	310000	0.35	-0.17
5	15	8.1	9.4	8.8	-1.28	-2.40	2738	2738	2738	1.59	1.84	-	-	-	-	-
6	15	13	12	12.8	0.59	0.66	-	-	-	-	-	-	-	-	-	-
7	5	9.0	6.4	7.7	-1.78	-3.22	1910	1950	1930	-2.41	-3.11	311000	306000	308500	0.23	-0.35
8	22	10.6	10.8	10.7	-0.37	-0.92	-	-	-	-	-	-	-	-	-	-
10	10	12.4	12.4	12.4	0.42	0.39	2529	2537	2533	0.57	0.59	313178	311070	312124	0.51	0.08
11-1	5.5	7.28	6.98	7.1	-2.04	-3.66	-	-	-	-	-	-	-	-	-	-
11-2	6.5	16.9	14.5	15.7	1.95	2.90	-	-	-	-	-	-	-	-	-	-
12	21	11.5	12.7	12.1	0.28	0.15	2460	2460	2460	0.21	0.14	313000	313000	313000	0.57	0.18
13	37	12.7	12.9	12.8	0.61	0.69	2530	2560	2545	0.63	0.66	296000	292000	294000	-0.86	-2.08
14	15	11.4	14.1	12.8	0.58	0.65	2536	2536	2536	0.59	0.60	311450	311450	311450	0.45	0.00
15	30	13.7	12.7	13.2	0.79	1.00	2330	2330	2330	-0.43	-0.66	312000	312000	312000	0.50	0.07
16	30	11.8/11	.4/11.9	11.7	0.09	-0.15	2557	-	2557	0.69	0.73	319900	-	319900	1.09	1.01
データ数 p				16					12					11		
Average				11.50					2417					305429		
SD				2.14					202					13241		
RSD				18.6					8.4					4.3		
SD/\sqrt{p}				0.53					58.37					3992.17		
$\overline{\text{RSD}}/\sqrt{p}$				4.65					2.41					1.31		
Median				11.90					2438					311450		
NIQR				1.30					163					8386		
RNIQR				11.0					6.7					2.7		

表 23 Sr-90, 安定 Sr 及び Ca 濃度の報告値及び z スコア計算値

6.3 不確かさの算出

測定方法としては、多くの試験所で放射性ストロンチウム分析法(放射能測定法シリーズ 2, 平成 15 年改訂,文部科学省)が参照された.大半の測定では、初段でストロンチウムだけを抽出する.その後、スカベンジ、ミルキングの操作を経て、Y-90 から放出される β線を検出している.検出にはガスフローカウンター又は液体シンチレーションカウンターが用いられた.

放射性ストロンチウム分析法(放射能測定法シリーズ 2)によれば,試料中に含まれる ストロンチウム 90 の放射能 A90,及びその標準偏差⊿A90 は,Bq単位で次式により計算 する.

$A90 \pm \triangle A90 = (n0 \pm \triangle n0) \times (100/E) \times (1/60) \times (100/Y)$

n0±⊿n0:ミルキング時における測定核種の計数率(cpm)

E:測定核種の検出効率(%)

Y:ストロンチウムの回収率(%)

ここで、n0の添え字の0は、基準時を意味する.

また,測定される核種は通常 Y-90 であるため,スカベンジ,ミルキングにおけるイット リウム回収率も不確かさ要因となるが,ストロンチウムの回収率に比べて不確かさはかな り小さいことが分かっているため,ここでの不確かさ算出では無視した.

上記の式は、ガスフローカウンターでベータ線強度を測定する場合に対応するものであ るが、液体シンチレーションカウンターを用いて測定する場合やミルキングを採用しない 場合なども含めて、Sr-90の測定における測定式として上式は共通に用いることができる. 下記に、要因ごとの不確かさについて検討する.

(1) 計数率

計数率(cpm)は、測定試料のカウント数からバックグランドのカウント数を差しい引いた もので、Cs-134 等のγ線測定の場合と同様に、次式で計算される.

 $n \pm (Ns/Ts) - (Nb/Tb) \pm {(Ns/Ts^2) + (Nb/Tb^2)}^{1/2}$

Ns:測定試料の計数値

Ts: 測定試料の測定時間(分)

Nb:バックグラウンドの計数値

Tb:バックグラウンドの測定時間(分)

ここで, n は計数率(cpm), ∠n はその標準偏差である.

本共同実験では、計数率の不確かさは報告値の標準偏差に含まれると考えられるので、 (5)の共同実験の不確かさの中に含まれる.

(2) 検出効率

検出効率の不確かさの要因として, Sr-90 標準液の不確かさの他に,標準液から生成した Y-90 の計数率,標準液の Sr-90 からの Y-90 の回収率,測定試料の質量に対する補正などが 考えられる.これらの要因の内で,標準液の不確かさが主要な要因と考えられるのでこれ を検出効率の標準不確かさとした.

標準液の標準不確かさは、3章に記述したように1.65%とする.

(3) ストロンチウム回収率

添付資料 3 に示されるようにストロンチウム回収には種々の方法が用いられている.また,測定結果は,計数率をストロンチウム回収率で割って計算されるので,方法間によるかたよりも平均化されると考えられる.従って,ストロンチウム回収率の不確かさは,共同実験のばらつきに含まれると考えられるので,この標準不確かさは,計数率の標準不確

かさと一緒に、共同実験の標準偏差を試験所数の平方根で割って与えられ、(5)の共同実 験の不確かさに含まれる.

(4) 試料採取及び均質性

採取量の不確かさは無視できるとした.また、均質性については6.1で検討した通り である.

(5) 共同実験

報告値の標準偏差としては、室間再現標準偏差とNIQRによる標準偏差が候補となるが、 参加した試験所数が限られるのでここでは単純な標準偏差である室間再現標準偏差を用い、 これを参加試験所数の平方根で割り、平均値の標準偏差として不確かさに合成する.

結論として, Sr-90 放射能濃度の合成標準不確かさは,共同実験の平均値,検出効率,均 質性試験の標準不確かさを合成して算出した.拡張不確かさを算出する包含係数として k= 2 を用いた.

表24に結果をまとめた.

		Sr-90
7	不確かさ要因(相対値)	(%)
	共同実験	4.65
	検出効率	1.65
	均質性	1.84
	相対合成標準不確かさ	5.27
	相対拡張不確かさ(<i>k</i> =2)	10.53
	拡張不確かさ(k=2)	1.19 Bq/kg

表 24 Sr-90 測定の不確かさバジェット表

認証書に記載する拡張不確かさは次の通り.

Sr-90 1.2 Bq/kg

ここで, 拡張不確かさは, 合成標準不確かさに信頼の水準約95%に相当する包含係数 k=2 を乗じた値である.

図 9 に Sr-90 の認証値と測定値の分布を示す.一部の測定値に付されたエラーバーは報告された拡張不確かさである.

図9 魚骨中の Sr-90 の認証値と測定値の分布

7.標準物質の利用

(1) 標準物質の利用の目的

JSAC 0781~0785 はγ線スペクトロメトリーによるセシウム 134, セシウム 137, カリウム 40の放射能分析の妥当性確認, 測定器の精度管理などに用いることができる.

尚, JSAC 0784, 0785 はストロンチウム 90 の放射能分析の妥当性確認, 測定器の精度管理などにも用いることができる.

- (2) 使用上の注意
 - JSAC 0781 及び JSAC 0784 は、それぞれ試料を 72.0g、97.0gを U8 容器(内径 48 mm)に充てんした後、中蓋を入れ、上蓋で固定されている。容器を故意に振動・転倒させて試料を攪拌することを避ける。
 U8 容器に充てんした試料の高さは 50 mm であるが、必ず高さを測定すること。
 特に JSAC 0784 は微粒子を含むため、注意する。
 - JSAC 0782 及びJSAC 0783 の γ 線測定用には適切な放射能測定用の容器に詰めか えて用いる. 採取量は 72 g以上を推奨とし、測定容器に詰めた試料の質量を精確 に測定し、記録すること.

測定容器に詰めかえる際は、あまり強く押し込まないように均質に充てんする.

- 3. JSAC 0784 及び JSAC 0785 を用いたストロンチウム 90 の分析においては, 最小の採取量は 5 g である.
- 4. 本標準物質は,放射性核種を含むため取扱いに注意し,廃棄の際には関連法規を遵 守する.

(3) 妥当性確認や測定器の精度管理への利用の仕方

この魚類認証標準物質には認証値の不確かさと所間(室間)再現標準偏差とが記載され ている.そのため、本魚類認証標準物質を測定し、次のような手順を利用して分析能力の 妥当性確認や測定器の精度管理に用いることができる.

拡張不確かさを推定する場合:

魚類認証標準物質を測定して測定値の不確かさを求めるには、本開発成果報告書における5.3又は6.3節を参照することができる.Cs-134,Cs-137が測定対象核種である限り、試験所が必要とする手順での、本開発成果報告書との違いは、計数誤差と均質性の取扱いであろう.Sr-90では、加えて安定Sr回収率の評価が必要になると考えられる.また、試験所は生産された多数の標準物質のうちの一つを測定するので、均質性についての配慮は不要である.

その他の要因については、本開発成果報告書の取扱いに準じて、あるいは必要なら文献 値などを用いて算出することが可能であろう.

推定した拡張不確かさを用いると、次の式から測定値の信頼性を評価することが可能である. *En*数の絶対値は、1以下であることが望ましい.

$$E_n = (x - X) / (U_x^2 + U_X^2)^{0.5}$$

ここで *x* : 試験所の値

- *X* : 認証値
- *Ux*: 試験所の値の拡張不確かさ(*k*=2)

UX:認証値の拡張不確かさ(k=2)

拡張不確かさを用いない場合:

認証書の所間(室間)再現標準偏差(SD)を用いることができる.所間再現標準偏差は 認証値決定のために共同実験に参加した試験所の測定値の平均値を基準として求めた標準 偏差である.

一般に、試験所において標準物質を分析したとき、その結果と認証値との差は所間標準 偏差の2倍(2SD)以内にあることが望ましい.これは技能試験において次式で求める スコアの絶対値が2以下に入ることと同等である.

z = (x - X) / SD

また,スクリーニング法などにおける測定器の校正や日常管理に用いることが可能である.

8. 認証書

添付資料 10 に掲載する.

9. 結 語

ここに放射能分析用 魚類認証標準物質(粉末状・灰状) JSAC 0781, JSAC 0782, JSAC 0783, JSAC 0784, JSAC 0785 を開発・作製した.

原子力発電所の事故による食生活への放射能影響を未然に防ぐための努力は引き続き必要な状態である.放射能分析の精確さはその基本となるものであり,特に日本人の食生活の安全のため,魚類認証標準物質が分析値の信頼性の確保に有効な役割を果たすことが期待される.

業務計画の立案と検討,製品の試作,そして共同実験への参加,データ解析その他多くの面でこの開発事業を支えていただいた関係者各位に深く感謝する.

以上

添 付 資 料

添付資料1 参加試験所が使用した参照標準(標準線源)の概略図(Cs-134, Cs-137, K-40)

33 / 102

魚類標準物質用試料の調製予備実験について

1. 魚類試料調製予備テスト

1.1 試料

放射能標準物質調製予備テスト試料として、コモンカスベが入手困難なため代替品として"アカエイ" を入手した。解体は蒸し器、電子レンジ、生のままの3種で試み、作業性が最もよかった蒸し器により 大部分を解体処理した。また、頭部・ヒレ部・体側部など部位ごとに分けて解体処理を行ったが、大き な差異もみられなかったため、最終的には肉部・骨部の2種とし、これらを使用して以下の乾燥・粉砕 テストを行った。

1.2 乾燥粉砕テスト

肉部・骨部に解体した試料を用いて、それぞれ乾燥・粉砕テストを行った。肉部の粉砕工程にて、乾 燥後の試料がどのような状態であるのが望ましいのか、粉砕困難な状態はどのようなものなのかを確認 した。

1.2.1 肉部の乾燥テスト

■バットに広げ105℃、5時間の条件で乾燥を行った。

写真3:乾燥後 $\Rightarrow \Delta$ 試料内部未乾燥

結果:乾燥経過を確認しながら途中で試料をほぐしたりしなければ、十分に乾燥が行き届かないものも あった。以降は、写真2の乾燥が十分な試料、写真3の乾燥が不十分な試料を使用して以下の粉砕テス トを行った。
1.2.2 肉部の粉砕テスト

■粉砕方法

粉砕方式による試料形状の確認を行うため、ミキサー、フードミル、製粉機を用いて、粉砕テスト を行った。また、粉砕後試料の粒度確認を行った(写真4)。

a. ミキサー

十分に乾燥できていない試料 粉砕後 ⇒ ×

十分乾燥させた試料の 粉砕後 ⇒ ◎

b. フードミル

十分に乾燥できていない試料 粉砕後 $\rightarrow X$

十分に乾燥させた試料 粉砕後 ⇒ ◎

c. 製粉機【ハンドル回転 120° 180° 360°】 ※ハンドルを全閉状態から開く方向(左)に回転させることで粒度を調節可能。 ※半回転開ければ180°、1回転開ければ360°と表記。

ハンドル 120°

十分に乾燥できていない試料 十分に乾燥できている試料 粉砕後 \rightarrow ×

粉砕後 ⇒ ◎

写真4 粉砕状況(aミキサー、bフードミル、c製粉機)

表1 粉砕後分級結果 分布表

ミキサー

2mm以上	2%
1mm~2mm	19%
500µm~1mm	35%
250µm~500µm	20%
150µm~250µm	13%
63µm∼150µm	10%
63μm以下	2%

フードミル

2mm以上	13%
1mm~2mm	25%
500µm∼1mm	23%
250µm~500µm	15%
150µm∼250µm	10%
63µm∼150µm	11%
63µm以下	3%

製粉機 120°

製粉機 180°

製粉機 360°

2mm以上	1%未満
1mm~2mm	6%
500µm∼1mm	23%
250µm~500µm	30%
150µm~250µm	23%
63µm∼150µm	17%
63 <i>μ</i> m以下	1%

2mm以上2%1mm~2mm10%500µm~1mm32%250µm~500µm30%150µm~250µm14%63µm~150µm9%63µm以下2%

(1)/1/x 000

2mm以上	2%
1mm~2mm	30%
500µm∼1mm	42%
250µm~500µm	13%
150µm~250µm	7%
63µm∼150µm	6%
63μm以下	1%

結果: ミキサー・フードミル・製粉機どの粉砕方法においても、十分に乾燥が行えている試料では粉砕可能であった。また、乾燥が不十分な試料においては粉砕が困難な結果となった(表 1)。

1.2.3 肉部テストまとめ

以上のテストの結果により、乾燥状態については水分を十分に飛ばさなければ粉砕する事が困難で あることが確認できた。ミキサー、フードミルについては、粉末状になるが一度に多くの量を処理で きないため連続的に粉砕を行える製粉機が現状では最も好ましいと考えられる。

1.2.4 骨部の灰化テスト

■マッフル炉にて灰化テストを行った(写真5)。

500℃ 5時間

写真5 マッフル炉による灰化試料

結果:問題なく灰化でき、時間差、温度差による違いも見た目上ではほぼ無かった。

36 / 102

1.2.5 骨部の粉砕テスト

ボールミル、ミキサー、フードミルを用いて粉砕テストを行った。また、粉砕後試料の粒度確認を 行った(写真6)。

a. 灰化後の試料をボールミルで1時間粉砕

粉砕前 10.4g

粉砕後 5.0g

回収率 48%

粉砕前 55.2g

b. ミキサー

粉砕前

回収率 77%

粉砕後 42.5g

粉砕後

粉砕前粉砕後写真6粉砕テスト状況(a ボールミル、b ミキサー、c フードミル)

表 2 粉砕後分級結果 分布表

ボールミル	\sim	ミキサー		フードミル	
250 <i>μ</i> m以上	19%	250µm以上	40%	250µm以上	52%
150µm∼250µm	60%	150µm~250µm	44%	150µm∼250µm	43%
63µm∼150µm	20%	63µm∼150µm	17%	63µm∼150µm	5%
63µm以下	1%未満	63µm以下	1%未満	63μm以下	1%未満

結果:粉砕自体はどの粉砕方法でも行えそうであった。ボールミルについては、容器やボールへの試料の付着が見受けられた。今回のテストでは試料量が少ないため回収率が低めになったが、付着量はある程度以上には増えないと思われるため、処理量が増えると回収率は高まると思われる。

1. 2-6 骨部テストまとめ

以上のテストの結果より、骨部灰化試料について粉砕はどの方法でも可能なことがわかった。

2. 環境総合テクノスにて乾燥したコモンカスベ肉部試料の予備検討

環境総合テクノスで乾燥したコモンカスベ試料肉部について観察を行った。乾燥状態は良好で粉砕も 問題なく行えた。アカエイ試料とは若干異なり U-8 容器への瓶詰め量はおおよそ 60~70g であった。

写真7 U8に充てんした乾燥・粉砕コモンカスベの肉部

3. 本試料による調製

環境総合テクノスより受領したコモンカスベ試料(肉部乾燥試料・骨部灰化試料)をそれぞれ粉砕・ 分級・混合・瓶詰めテスト等を行った。

環境総合テクノスにて解体・乾燥されたコモンカスベ肉部乾燥試料、及び解体・灰化されたコモンカ スベ骨部灰化試料を受領した(写真8)。これらを用い試料の調製を行った。詳細については本文に述べ る。

写真8:左:コモンカスベ肉部乾燥試料、右:骨部灰化試料

以上

添付資料3:参加試験所の測定条件と結果(魚肉) Cs-134, Cs-137, K-40

魚骨については省略する

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		供試品基準時での	の換算放射能濃度	2014-11-01 JS	T 00:00:00		\rightarrow	\rightarrow
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	試験所 番号	核種	半減期 (出典を記入する)	エネルギー keV	放出率	ピーク効率cps/ γ	サム効果補正有 無	自己吸収補正有 無
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Cs-134	2.0648v	604, 72	0, 9762	0. 20%	無	無
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Cs-134	2.0648v	795, 86	0, 8553	0.16%	無	無
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Cs-134 (平均)	,				~~~~	710
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I	Cs-137	30. 07y	661.66	0.851	0.19%	無	無
Control 出典WWW Table of Radioactive Isotopes http://ie.lbl.gov/toi/ 2 添付資料 5 I二記載 Cs-134 2.06 795.8 85.4 0.011212 有 有 4 Cs-137 30.14 661.6 85.1 0.014117 有 有 K-40 1277000000 1460.8 10.7 0.00727 有 有 Cs-137 1.0.1212 605 97.6 1.26.E-02 有 有 Cs-137 1.10.E+04 662 85.0 1.24.E-02 無 有 5 Cs-137 1.10.E+04 662 85.0 1.24.E-02 無 有 H典: table de radionucleides 2007 70.89148 0.89123 Cs-134 2.06Y 563.26 8.38 0.857 0.89824 Cs-134 2.06Y 569.29 15.43 0.85477 0.898680 Cs-134 2.06Y 569.29 15.43 0.891480 0.91257		K-40	1.28E+09	1460.83	0. 107	0.09%	無	無
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			出典WWW Table of	Radioactive Iso	topes http://ie.	lbl.gov/toi/		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	添付資料5に記載						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Cs-134	2.06	795.8	85.4	0. 011212	有	有
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	Cs-137	30.14	661.6	85.1	0.014117	有	有
出典: Atomic Data and Nuclear Data Tables(1983年) Cs-134 7.54.E+02 605 97.6 1.26.E-02 有 有 Cs-137 1.10.E+04 662 85.0 1.24.E-02 無 有 K-40 4.57.E+11 1461 10.6 6.19.E-03 無 有 出典: table de radionucleides 2007 Cs-134 2.06Y 475.35 1.47 0.89148 0.89123 Cs-134 2.06Y 475.35 1.47 0.89148 0.89123 Cs-134 2.06Y 563.26 8.38 0.857 0.89824 Cs-134 2.06Y 569.29 15.43 0.85477 0.898680 Cs-134 2.06Y 604.66 97.56 0.90733 0.9115 Cs-134 2.06Y 801.84 8.73 0.891480 0.91257 Cs-134 2.06Y 801.84 8.73 0.891480 0.91257 Cs-134 2.06Y 1167.86 1.81 1.090400 0.92707 Cs-134 2.06Y 1365.13<		K-40	1277000000	1460.8	10. 7	0.00727	有	有
5 Cs-134 7.54.E+02 605 97.6 1.26.E-02 有 有 5 Cs-137 1.10.E+04 662 85.0 1.24.E-02 無 有 K-40 4.57.E+11 1461 10.6 6.19.E-03 無 有 出典:table de radionucleides 2007 0.89148 0.89123 Cs-134 2.06Y 475.35 1.47 0.89148 0.89123 Cs-134 2.06Y 563.26 8.38 0.857 0.89824 Cs-134 2.06Y 569.29 15.43 0.85477 0.898680 Cs-134 2.06Y 604.66 97.56 0.90733 0.90115 Cs-134 2.06Y 795.76 85.44 0.91103 0.91226 Cs-134 2.06Y 801.84 8.73 0.891480 0.91257 Cs-134 2.06Y 1167.86 1.81 1.090400 0.92707 Cs-134 2.06Y 1365.13 3.04 1.164200 0.93278			出典 : Atomic Dat	a and Nuclear Da	ta Tables(1983年)			
5 Cs-137 1.10.E+04 662 85.0 1.24.E-02 無 有 K-40 4.57.E+11 1461 10.6 6.19.E-03 無 有 出典:table de radionucleides 2007 0.89148 0.89123 Cs-134 2.06Y 475.35 1.47 0.89148 0.89123 Cs-134 2.06Y 563.26 8.38 0.857 0.89824 Cs-134 2.06Y 569.29 15.43 0.85477 0.898680 Cs-134 2.06Y 604.66 97.56 0.90733 0.90115 Cs-134 2.06Y 795.76 85.44 0.91103 0.91226 Cs-134 2.06Y 1167.86 1.81 1.090400 0.92707 Cs-134 2.06Y 1365.13 3.04 1.164200 0.93278 Cs-134 2.06Y 1365.13 3.04 1.164200 0.93278		Cs-134	7. 54. E+02	605	97.6	1.26.E-02	有	有
G K-40 4.57.E+11 1461 10.6 6.19.E-03 無 有 出典:table de radionucleides 2007 0.89148 0.89123 0.89123 0.89148 0.89123 Cs-134 2.06Y 475.35 1.47 0.89148 0.89123 Cs-134 2.06Y 563.26 8.38 0.857 0.89824 Cs-134 2.06Y 569.29 15.43 0.85477 0.898680 Cs-134 2.06Y 604.66 97.56 0.90733 0.90115 Cs-134 2.06Y 795.76 85.44 0.91103 0.91226 Cs-134 2.06Y 801.84 8.73 0.891480 0.91257 Cs-134 2.06Y 1167.86 1.81 1.090400 0.92707 Cs-134 2.06Y 1365.13 3.04 1.164200 0.93278 Cs-134 2.06Y 1365.13 3.04 1.164200 0.93278	5	Cs-137	1. 10. E+04	662	85.0	1. 24. E-02	無	有
出典:table de radionucleides 2007 Cs-134 2.06Y 475.35 1.47 0.89148 0.89123 Cs-134 2.06Y 563.26 8.38 0.857 0.89824 Cs-134 2.06Y 569.29 15.43 0.85477 0.898680 Cs-134 2.06Y 604.66 97.56 0.90733 0.90115 Cs-134 2.06Y 795.76 85.44 0.91103 0.91226 Cs-134 2.06Y 801.84 8.73 0.891480 0.91257 Cs-134 2.06Y 1167.86 1.81 1.090400 0.92707 Cs-134 2.06Y 1365.13 3.04 1.164200 0.93278	5	K-40	4. 57. E+11	1461	10. 6	6. 19. E-03	無	有
$6 \begin{array}{ c c c c c c c c c c c c c c c c c c c$			出典:table de r	adionucleides 20	07	•		
6 Cs-134 2.06Y 563.26 8.38 0.857 0.89824 Cs-134 2.06Y 569.29 15.43 0.85477 0.898680 Cs-134 2.06Y 604.66 97.56 0.90733 0.90115 Cs-134 2.06Y 795.76 85.44 0.91103 0.91226 Cs-134 2.06Y 801.84 8.73 0.891480 0.91257 Cs-134 2.06Y 1167.86 1.81 1.090400 0.92707 Cs-134 2.06Y 1365.13 3.04 1.164200 0.93278 Cs-134 2.06Y 1365.14 0.95 0.90100 0.93278		<u>Cs-134</u>	2.06Y	475.35	1.47		0.89148	0.89123
6 Cs-134 2.06Y 569.29 15.43 0.85477 0.898680 Cs-134 2.06Y 604.66 97.56 0.90733 0.90115 Cs-134 2.06Y 795.76 85.44 0.91103 0.91226 Cs-134 2.06Y 801.84 8.73 0.891480 0.91257 Cs-134 2.06Y 1167.86 1.81 1.090400 0.92707 Cs-134 2.06Y 1365.13 3.04 1.164200 0.93278 Cs-134 2.06Y 1365.13 3.04 0.90000 0.92707		<u>Cs-134</u>	2.06Y	563.26	8.38		0.857	0.89824
6 Cs-134 2.06Y 604.66 97.56 0.90/33 0.90115 Cs-134 2.06Y 795.76 85.44 0.91103 0.91226 Cs-134 2.06Y 801.84 8.73 0.891480 0.91257 Cs-134 2.06Y 1167.86 1.81 1.090400 0.92707 Cs-134 2.06Y 1365.13 3.04 1.164200 0.93278 Cs-134 2.06Y 1365.13 3.04 1.000000 0.92707		<u>Cs-134</u>	2.06Y	569.29	15. 43		0.85477	0.898680
6 Cs-134 2.06Y 795.76 85.44 0.91103 0.91226 6 Cs-134 2.06Y 801.84 8.73 0.891480 0.91257 Cs-134 2.06Y 1167.86 1.81 1.090400 0.92707 Cs-134 2.06Y 1365.13 3.04 1.164200 0.93278 Cs-134 2.06Y 0.01.04 0.05 0.01.04 0.001.04		<u>Cs-134</u>	2.06Y	604.66	97.56		0.90/33	0.90115
6 Cs-134 2.06Y 801.84 8.73 0.891480 0.91257 Cs-134 2.06Y 1167.86 1.81 1.090400 0.92707 Cs-134 2.06Y 1365.13 3.04 1.164200 0.93278 Cs-134 0.001.04 0.01.04 0.01.04 0.01.04 0.01.04		<u>Cs-134</u>	2.06Y	/95. /6	85.44		0.91103	0.91226
Cs-134 2.06Y 1167.86 1.81 1.090400 0.92707 Cs-134 2.06Y 1365.13 3.04 1.164200 0.93278 Cs-134 2.06Y 001.04 05 1.090400 0.92707	6	<u>Cs-134</u>	2.06Y	801.84	8. 73		0.891480	0.91257
Cs-134 2.06Y 1365.13 3.04 1.164200 0.93278 Cs-134 <td< td=""><td></td><td><u>Cs-134</u></td><td>2.06Y</td><td>1167.86</td><td>1.81</td><td></td><td>1.090400</td><td>0.92707</td></td<>		<u>Cs-134</u>	2.06Y	1167.86	1.81		1.090400	0.92707
		<u>Cs-134</u>	2.06Y	1365. 13	3.04		1.164200	0.93278
		<u>Us-134</u>	00.01/	001 04	05		1 000000	0.00400
			30.21 10000000V		85		1.000000	0.90483
K-40 1280000001 1460.75 10.67 1.000000 0.93518		K-40	1280000001	1400.75	10.0/		1.000000	0.93518
		0- 104			pe /th Edition	0.0140707	+	+
US-134 Z. U62Y 569. 32KeV 15. 43 U. U148/37 月 月 0-104 0.000V 0.04.70keV 0.7.00 0.0140007 十 十		<u>US-134</u>	2.062Y	569. 32KeV	15.43	0.0148/3/		
US-134 Z. U0ZY 004. /UKeV 9/. 00 U. U14800/ 有 有		US-134	Z. 0621	004. /UKEV	97.00	0.0148007	月	
US-134 Z. U0Z1 /95. 85KeV 85. 40 U. U114101 月 月 0a 124 2.062V 001.02kaV 0.72 0.0111427 本 本		0s - 134	2.0021 2.0021	/95.85KeV	85.40		1	
$\begin{bmatrix} 8 & 0.5 - 1.34 & 2.0021 & 0.01.93KeV & 0.73 & 0.011437 & 16 & 16 \\ 0.0124 & 2.062V & 604.70keV & 0.760 & 0.0140007 & 16 & 16 \\ \hline \end{bmatrix}$	8	08 - 134		601 70KeV	<u> </u>	0.0140007		
US ⁻ 134 Z. U0ZI 0U4. /UKeV 9/. 0U U. U1480U/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\frac{08-134}{00,127}$	2. U021	004. /UKEV	97.00	0.0147626	月	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>	عرب 1 277 ∨ 100V	1/60 75kgV	00.21	0.014/030		
N ⁻ +0 I.2//^IU3I I400./JNCV IU.0/ 0.00032437 ⁻ 1 出曲・「ゲルマニウム半道体検出哭によるガンマ線スペクトロメトリー」文部封学楽・故創能測完注シリーブフ		I\ [−] 40	<u> I. Z/ / へ IU91</u> 出曲・「ゲルマニウ/ 半	1400./JNCV 道休倫出哭にトスガンフ	IV. V/ / 線スペクトロメトリー	0.00032437 文部私学名·协封能测空	 注シリーズフ	日

試験所 番号	核種	半減期 (出典を記入する)	エネルギー keV	放出率	ピーク効率cps/ γ	サム効果補正有 無	自己吸収補正有 無
	Cs-134	753. 1D	604.66	97.56		0.952463	0.901150
10	<u>Cs-134</u>	753. 1D	795.76	85.44		0.953158	0.912263
10	Cs-137	1. 102 × 10 ⁴ D	661.64	85.00		1	0. 904827
	K-40	4. 664×10^{11} D	1460. 75	10. 67		1	0. 935180
	Cs-134	7.531×10 ² 日	604.66	97.56	0.021237	有	有
11	Cs-137	1.102×10 ⁴ 日	661.64	85	0.02222	無	有
11	K-40	4.664×10 ¹¹ 日	1460.75	10.67	0.012944	無	有
		出典:放射能測定	シリーズ7 ゲルマ	ニウム半導体検出	器によるガンマ線ス	スペクトロメトリー	- (文部科学 ł
	Cs-134	2. 062y	604. 66keV	97.56%			
10	Cs-137	30. 174y	661.638keV	85%		しいたけ認証作	票凖物頁(JSAU ズキスレ仮史
12	K-40	1.277*10 ⁹ y	1460. 75keV	10.67%			でめると似た
		出典:ゲルマニウ	ム半導体検出器に	よるガンマ線スペー	クトロメトリー		
	Cs-134	2.0648(10) y	563.25	0. 0835 (4)	0.00096	Cs134を含む標準線源な	有
	Cs-134	2.0648(11) y	569.33	0. 1538(6)	0.00176	のでキャンセルされ	有
	Cs-134	2.0648(12) y	604. 72	0.9762(3)	0.0113	る。たたし密度の違いにによる効率の違い分は	有
14	Cs-134	2.0648(13) y	795.86	0. 8553 (4)	0.0079	補正	有
14	Cs-134						
	Cs-137	30.07(3) y	661.66	0. 851 (2)	0. 0101	無	有
	K-40	1.277(8)E9 y	1460.83	0. 1067 (13)	0.00065	無	有
	出典:	Table of Isotope	s 1998				
	Cs-134	2.0648Y	605	0.9756	0. 015636	有	有
15	Cs-137	30. 1671Y	662	0.85	0. 015727	無	有
15	K-40	1. 251 × 109Y	1461	0. 1067	0.0077	無	有
	出典:「	able of isotope 7	7th. Ed.	•			
	Cs-134	2.062年	604. 66keV	0.9756	0. 0183	有	有
	<u>Cs-134</u>	2.062年	795. 76keV	0.8544	0.0147	有	有
16	<u>Cs-134</u>	2.062年	604.66keV	0.9756	0.0183	有	有
	<u>Cs-137</u>	30.174年	661.638kev	0.85	0.0185	無	有
	K-40	<u>1.277×10[®]年</u>	1460. 75kev	0. 1067	0.00965	無	有
		<u>出典:ゲルマニウ</u>	ム半導体検出器に	<u>よるカンマ線スペ</u>	<u>クトロメトリー平原</u>	夜4年改訂	

試験所 番号	核種	半減期 (出典を記入する)	エネルギー keV	放出率	ピーク効率cps/ γ	サム効果補正有 無	自己吸収補正有 無
	Cs-134		569.29	1543.00%	0.015767607	無	
	Cs-134		604.66	9756.00%	0.01629048	無	
	Cs-134		795. 76	8544.00%	0.013101591	無	
	Cs-134		801.84	873.00%	0.013386387	無	
17	Cs-134		1365.13		0.011398411	無	
	Cs-134 平均值(①	D. 2. 3. 40म	☑均)				
	Cs-137	30.2	661.64	8510.00%	0.016757531	無	
	K-40		1460. 75	1070. 00%	0.009464684	無	
		出典:ゲルマニウ	ム半導体検出器に	よるガンマ線スペー	クトロメトリー平原	戈4年改訂	
	Cs-134	2.06年	604.66	97. 56		有	有
18	Cs-137	30.2年	661.64	85.00		有	有
	K-40	12.48億年	1460.75	10.67		有	有

カウント数 N, Nb, N',Nb'については末尾(カウント数)の図を参照して下さい。

	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow		\rightarrow	
試験所 番号	ピーク面積計算方 法(関数法又はコ ベール法、その 他)	機器ソフト上で選 択した試料材質	測定時間 live time(秒)	グロスカウント 数 N	ベースラインカ ウント数 Nb	正味カウント数 N-Nb	ピーク計数率 (カウント数/秒)	試料がないときの グロスバックグラウ ンドカウント数 N' [*]
	関数法		340340	3282.01		3282.01	0.009643327	472.403
	関数法		340340	2335.27		2335.27	0.00686158	352,586
	関数法		340340	8539.16		8539.16	0.025090086	1494.26
	関数法		340340	2655.93		2655.93	0.007803755	4911.83
2				•				•
	コベール法	灰化物	86400	3754	221	3520.9妨害分 (12.1cnts)差引	0.043449074	226
4	コベール法	灰化物	86400	14259	327.6	13931.4	0.165034722	258
	コベール法	灰化物	86400	1715	69.6	1645.4	0.019849537	121
	コベール法	水	200000	12122	1054	11068	0.06	2359
5	コベール法	水	200000	30460	858	29602	0.15	2352
5	コベール法	水	200000	4181	156	4025	0.02	3433
	関数適合法	海底土,土壤,灰化物	86400	1351.0	1175.0	1.7600E+02	1.5637E-02	1454
	関数適合法	海底土,土壤,灰化物	86400	1076.0	553.4	5.2260E+02	1.2454E-02	1572
	関数適合法	海底土,土壤,灰化物	86400	1618.0	592.1	1.0259E+03	1.8727E-02	1319
	関数適合法	海底土,土壤,灰化物	86400	7325.0	696.1	6.6289E+03	8.4780E-02	2413
	関数適合法	海底土,土壤,灰化物	86400	4891.0	229.1	4.6619E+03	5.6609E-02	761
6	関数適合法	海底土,土壤,灰化物	86400	669.0	236.4	4.3260E+02	7.7431E-03	931
Ū	関数適合法	海底土,土壤,灰化物	86400	325.0	203.5	1.2150E+02	3.7616E-03	909
	関数適合法	海底土,土壤,灰化物	86400	245.0	87.3	1.5770E+02	2.8356E-03	448
	<u> </u>	海底土,土壌,灰化物	86400	19602.0	409.8	1.9192E+04	2.2688E-01	1144
		海底土,土壤,灰化物	86400	2492.0	81	2.4110E+03	2.8843E-02	484
		水、寒天	86400	1426	624.6	801.4	0.01650463	272
	関数法	水、寒天	86400	6047	597.4	5449.6	0.069988426	263
	関数法	水、寒天	86400	3871	238.2	3632.8	0.044803241	173
8	関数法	水、寒天	86400	581	206	375	0.006724537	191
	関数法	水、寒天						
	関数法	水、寒天	86400	15809	430	15379	0.182974537	264
	関数法	水、寒天	86400	1953	76	1877	0.022604167	310
1						0		

 試験所 番号	ピーク面積計算方 法(関数法又はコ ベール法、その 他)	機器ソフト上で選 択した試料材質	測定時間 live time(秒)	グロスカウント 数 N	ベースラインカ ウント数 Nb	正味カウント数 N-Nb	ピーク計数率 (カウント数/秒)	試料がないときの グロスバックグラウ ンドカウント数 N' [*]
		<u>土壤,海底土</u>	86400	3547	199/172			
10		<u>土壤,海底土</u>	86400	2203	95/67			
		土壤,海底土	86400	8856	140/120			
		土壤,海底土	86400	1130	33/20			
	コベール法	寒天	86400	8830	990	7840	0.090740741	2252
11	コベール法	寒天	86400	23010	628.8	22381.2	0.259041667	1097
	コベール法	寒天	86400	3172	181.9	2990.1	0.034607639	928
	〕 科学技術・学術	所政策局原子力安全	課防災環境対策	室)				
	関数法		86400			2657	0	
12	関数法		86400			7628	0	
12	関数法		86400			1354	0	
		-		-				
	コベール法		161369	2205	1296	909	0.013664335	1105
	コベール法		161369	2790	1296	1494	0.017289566	1403
	コベール法		161369	10352	1386	8966	0.064151107	1278
14	コベール法	γ線源を用いて線減弱 係数を実測	161369	7036	677	6359	0.043601931	924
14								
	コベール法	Ï	161369	25609	905	24704	0.158698387	1647
	コベール法		161369	4955	218	4737	0.030706022	3200
	コベル法	C43H78N4021(大	87331	8998	909.4	8088.6	0.103033287	2003
15	コベル法	豆の組成を適	87331	24597	647.1	23949.9	0.281652563	1051
15	コベル法	用)	87331	3638	130.2	3507.8	0.041657602	846
				•				
	コベル法	灰化物	86400	7476	909.6	6566.4	0.086527778	
	コベル法	灰化物	86400	5046	531.9	4514.1	0.058402778	
16	コベル法	灰化物				101707	0.001=00001	
, , ,	<u>コベル法</u>	<u>火化物</u>	86400	19163	692.5	18470.5	0.221793981	0070
Ļ	コペル法	火化物	86400	4186	150	4036	0.048449074	3073
16	コベル法 コベル法 コベル法 コベル法	灰化物 灰化物 灰化物 灰化物 灰化物	86400 86400 86400	5046 19163 4186	531.9 692.5 150	4514.1 18470.5 4036	0.058402778 0.221793981 0.048449074	

試験所 番号	ピーク面積計算方 法(関数法又はコ ベール法、その 他)	機器ソフト上で選 択した試料材質	測定時間 live time(秒)	グロスカウント 数 N	ベースラインカ ウント数 Nb	正味カウント数 N-Nb	ピーク計数率 (カウント数/秒)	試料がないときの グロスバックグラウ ンドカウント数 N' [*]
	関数法	水,寒天	100000	1101.9	42.8	1059.1	0.010591	
	関数法	水,寒天	100000	7286.8	89.3	7197.5	0.071975	
	関数法	水,寒天	100000	5086.8	73.6	5013.2	0.050132	
	関数法	水,寒天	100000	517.1	29.9	487.2	0.005171	
17	関数法	水,寒天	100000	517.1	29.9	487.2	0.004872	
	関数法	水,寒天	100000	21071.2	147.9	20923.3	0.209233	
	関数法	水,寒天	100000	2574.7	54.3	2574.7	0.025747	
	関数適合法	水・寒天	86400	6377	758.4	5618.6	0.07380787	173
18	関数適合法	水・寒天	86400	17383	552.9	16830.1	0.20119213	168
	関数適合法	水・寒天	86400	2978	84	2894	0.034467593	485

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ļ	\rightarrow	\rightarrow		した値でよい	*事前に測定	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	拡張不確かさ (<i>k=</i> 2) (Bq/kg)	供試品作製時 の放射能濃度 (Bq/kg)	供試品作製時の 放射能 Bq	測定時の放射能 Bq	バックグラウンド測 定時間 [*] 秒	試料がないときの 正味バックグラウ ンドカウント数 N'- Nb' *	試料がないときの ベースラインカウン ト数 Nb'*	試験所 番号
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		66.552	4.792	4.649	900000	472.403		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		68.708	4.947	4.799	900000	361.4		
1 1494.26 900000 14.836 14.867 206.49 4 4911.83 900000 23.802 23.802 330.59 0 0 23.802 23.802 330.59 2 -12.3妨害分 (16.3cnts)差引 146561 4.3 4.3 60 233.8 24.2 146561 13 13 190 120.7 0.3 146561 24 24 340 2327 32 930000 4.5 4.6 63.4 1965 337 930000 14.0 14.0 194.8 628 2805 930000 26.2 26.2 363.9 1965 337 930000 26.2 26.2 363.9 1965 337 930000 26.2 26.2 363.9 1965 337 930000 4.5 4.6 63.4 1965 337 930000 4.6 23.27 10.59 1319 237600 4.35		67.63						1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		206.49	14.867	14.836	900000	1494.26		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		330.59	23.802	23.802	900000	4911.83		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						0		
4 222 -12.3妨害分 (16.3cnts)差引 146561 4.3 4.3 60 233.8 24.2 146561 13 13 190 120.7 0.3 146561 24 24 340 0 0 0 0 0 0 5 2327 32 930000 4.5 4.6 63.4 1965 387 930000 14.0 14.0 194.8 628 2805 930000 26.2 26.2 363.9 0								2
4 233.8 24.2 146561 13 13 190 120.7 0.3 146561 24 24 340 0 0	6.3	60	4.3	4.3	146561	-12.3妨害分 (16.3cnts)差引	222	
120.7 0.3 146561 24 24 340 0	19	190	13	13	146561	24.2	233.8	4
0 4.5 4.6 63.4 5 1965 387 930000 14.0 14.0 194.8 628 2805 930000 26.2 26.2 363.9	38	340	24	24	146561	0.3	120.7	
2327 32 930000 4.5 4.6 63.4 1965 387 930000 14.0 14.0 194.8 628 2805 930000 26.2 26.2 363.9 1454 237600 7.924E+00 110.050 1572 237600 4.352E+00 60.446 1319 237600 4.276E+00 59.394 2413 237600 4.360E+00 60.562 761 237600 4.360E+00 60.562 931 237600 4.811E+00 66.817 909 237600 4.811E+00 66.817 909 237600 4.582E+00 63.638 1144 237600 4.582E+00 63.638 1448 237600 4.582E+00 63.638 1448 237600 1.376E+01 191.100 484 237600 2.523E+01 350.370						0		
5 1965 387 930000 14.0 14.0 194.8 628 2805 930000 26.2 26.2 363.9	3.4	63.4	4.6	4.5	930000	32	2327	
3 628 2805 930000 26.2 26.2 363.9	7.3	194.8	14.0	14.0	930000	387	1965	Б
6 1454 237600 7.924E+00 110.050 1572 237600 4.352E+00 60.446 1319 237600 4.276E+00 59.394 2413 237600 4.409E+00 61.237 761 237600 4.360E+00 60.562 931 237600 4.811E+00 66.817 909 237600 4.582E+00 63.638 448 237600 4.582E+00 63.638 1144 237600 1.376E+01 191.100 484 237600 2.523E+01 350.370	24.6	363.9	26.2	26.2	930000	2805	628	5
6 1454 237600 7.924E+00 110.050 1572 237600 4.352E+00 60.446 1319 237600 4.276E+00 59.394 2413 237600 4.409E+00 61.237 761 237600 4.360E+00 60.562 931 237600 4.208E+00 58.442 909 237600 4.811E+00 66.817 448 237600 4.582E+00 63.638 1144 237600 1.376E+01 191.100 484 237600 2.523E+01 350.370								
6 1572 237600 4.352E+00 60.446 1319 237600 4.276E+00 59.394 2413 237600 4.409E+00 61.237 761 237600 4.360E+00 60.562 931 237600 4.360E+00 58.442 909 237600 4.811E+00 66.817 448 237600 4.582E+00 63.638 1144 237600 1.376E+01 191.100 484 237600 2.523E+01 350.370		110.050	7.924E+00		237600	1454		
6 1319 237600 4.276E+00 59.394 2413 237600 4.409E+00 61.237 761 237600 4.360E+00 60.562 931 237600 4.208E+00 58.442 909 237600 4.811E+00 66.817 448 237600 4.582E+00 63.638 1144 237600 1.376E+01 191.100 484 237600 2.523E+01 350.370		60.446	4.352E+00		237600	1572		
6 2413 237600 4.409E+00 61.237 761 237600 4.360E+00 60.562 931 237600 4.208E+00 58.442 909 237600 4.811E+00 66.817 448 237600 4.582E+00 63.638 1144 237600 1.376E+01 191.100 484 237600 2.523E+01 350.370		59.394	4.276E+00		237600	1319		
6 761 237600 4.360E+00 60.562 931 237600 4.208E+00 58.442 909 237600 4.811E+00 66.817 448 237600 4.582E+00 63.638 11144 237600 1.376E+01 191.100 484 237600 2.523E+01 350.370		61.237	4.409E+00		237600	2413		
6 931 237600 4.208E+00 58.442 909 237600 4.811E+00 66.817 448 237600 4.582E+00 63.638 11144 237600 1.376E+01 191.100 484 237600 2.523E+01 350.370		60.562	4.360E+00		237600	761		
0 909 237600 4.811E+00 66.817 448 237600 4.582E+00 63.638 1144 237600 1.376E+01 191.100 484 237600 2.523E+01 350.370		58.442	4.208E+00		237600	931		6
448 237600 4.582E+00 63.638 6 荷重平均放射能 2.130E+00 60.848 1144 237600 1.376E+01 191.100 484 237600 2.523E+01 350.370		66.817	4.811E+00		237600	909		U
荷重平均放射能 2.130E+00 60.848 1144 237600 1.376E+01 191.100 484 237600 2.523E+01 350.370		63.638	4.582E+00		237600	448		
1144 237600 1.376E+01 191.100 484 237600 2.523E+01 350.370		60.848	2.130E+00	荷重平均放射能				
484 237600 2.523E+01 350.370		191.100	1.376E+01		237600	1144		
		350.370	2.523E+01		237600	484		
276.3 -4.3 86400 4.09 4.252 59.06	6.14	59.06	4.252	4.09	86400	-4.3	276.3	
225 38 86400 4.374 4.547 63.16	3.60	63.16	4.547	4.374	86400	38	225	
143.4 29.6 86400 4.338 4.51 62.64	3.74	62.64	4.51	4.338	86400	29.6	143.4	
e 152.2 38.8 86400 4.378 4.551 63.21	9.24	63.21	4.551	4.378	86400	38.8	152.2	Q
63.16	3.60	63.16						0
252 12 86400 14.14 14.18 197	10.20	197	14.18	14.14	86400	12	252	
<u>60.9</u> <u>249.1</u> <u>86400</u> <u>25.33</u> <u>25.33</u> <u>351.9</u>	27.2	351.9	25.33	25.33	86400	249.1	60.9	

試験所 番号	試料がないときの ベースラインカウン ト数 Nb' [*]	武ホキル・ないとさの 正味バックグラウ ンドカウント数 N'- Nb' *	バックグラウンド測 定時間 [*] 秒	測定時の放射能 Bq	供試品作製時の 放射能 Bq	供試品作製時 の放射能濃度 (Bq/kg)	拡張不確かさ (<i>k=</i> 2) (Bq/kg)
						64.1	
10						60.2	
10						195	
						352	
	2168.1	83.9	250000	4.3796	4.4408	61.7	3.8
11	1112.8	-15.8	250000	13.7153	13.7283	190.7	11.1
	498.8	429.2	250000	23.8145	23.8145	330.8	24.1
				3.94E+00	4.03E+00	56.0	
12				1.34E+01	1.34E+01	186.6	
12		28	1.00E+04	2.25E+01	2.25E+01	312.8	
	1083	22	265960	5.62			
	1363	40	265960	5.03			
	1024	254	265960	4.7			
14	720	204	265960	4.77			
14			Weighted average	4.73	4.82	66.8	3.2
	840	807	265960	14.4	14.4	200	9
	280	2920	265960	27.4	27.4	380	22
	1838.3	164.7	172718	4.337	4.572	64	1.63
15	791	260	172718	14.14	14.19	197	2.66
15	227.1	618.9	172718	27.49	27.49	382	14.4
			129600	4.75	4.8	66.7	3.7
			129600	4.58	4.63	64.3	3.7
16			100000	1 - 1	4 - 4	66.7	3.7
	000.0	0000.1	129600	15.1	15.1	209	10
	209.9	2863.1	129600	25.6	25.6	356	17

試験所 番号	試料がないときの ベースラインカウン ト数 Nb' *	試料がないときの 正味バックグラウ ンドカウント数 N'- Nb' *	バックグラウンド測 定時間 [*] 秒	測定時の放射能 Bq	供試品作製時の 放射能 Bq	供試品作製時 の放射能濃度 (Bq/kg)	拡張不確かさ (<i>k=</i> 2) (Bq/kg)
				4.529084878	62.90395664	65	
				4.584913898	63.67935969	65	
				4.544220554	63.11417437	65	
				4.424833257	61.45601746	63	
17				3.786307896	52.58760967	54	
						65	
				14.77575473	205.2188157	205	
				25.42358073	353.105288	353	
	167.9	5.1	36000	4.11	4.3056	59.8	3.2
18	153	15	36000	13.91	13.95	193.8	9.4
	31.6	453.4	36000	23.9976	24.00	333.3	35.1

添付資料4 : 共同実験参加試験所のその他の測定条件

試験所 番号	測定方法名	検出器のメーカーと型番	Ge検出器の相対 効率	検出効率(cps/Bq)を求めるために 使用した標準線源の種類、質量、密 度、容器(充填高さ)、核種毎の検 出効率(cps/Bq)、できれば自己吸 収計算方法やソフト名など	試料測定方法:報告シート(1)以 外の、質量、密度、容器(充填高 さ)など	その他のコメント
1	γ線スペクトロメトリ Cs-134の定量は2つのピーク の平均値 バックグラウンドカウント数 Nb,Nb'はピークフィッティングを 行っているので,求めていな い。解析方法の詳細は文献(鈴 木章悟,伊下信也: Radioisotopes,57,429(2008))に 記載	セイコーEG&G Ge検出器GEM20P4-70	相対効率20%	日本アイソトープ協会製放射能標準 ガンマ体積線源Co-60,Mn-54,Cs- 137等 線源コードMX033U8PP, 線源番号2753	質量72.0g U8容器(内径48mm, 高さ50mm) サム効果や自己吸収の補正は 行っていないが,サム効果を減ら すため試料と標準線源は検出器 から8cmの距離をとった。効率曲 線は同じ高さの体積混合線源 Co-60,Mn-54,Cs-137,Y-88の合 計6ピークの効率を両対数グラフ で線形近似して求めた。	
2	γ線スペクトロメトリ	報告なし			添付資料5に記載	
4	γ線スペクトロメトリー	CANBERRA社製 GC2519-7	31	検出効率については別添参照 自己吸収補正方法:文部科学省測 定法シリーズに準拠 使用ソフトウェア:SEIKO EG&G社製 ガンマスタジオ	重量 : 72 g 密度 : 0.791 g/cm ³ 容器 : U-8(充填高 : 50mm)	
5	ゲルマニウム半導体検出器に よる ガンマ線スペクトロメトリー	ORTEC GEM20	23%	標準線源の種類 9核種混合 放射能標準ガンマ体積 線源(U8タイプ) 自己吸収計算に使用したソフト名 Gamma studio	質量:72.0g 密度:0.7676g/cm3 容器:U8タイプ(プラ壷) 充填高さ:50.35mm	特になし
6	同軸型Ge半導体検出器を用い た測定	Canberra GX2019 (S/N 03036329)		放射能標準ガンマ線体積線源(ア ルミナ)、日本アイソトープ協会	重量72.0g、高さ5cm、密度0.796	
8	ゲルマニウム半導体検出器に よるガンマ線スペクトロメトリー	・メーカー : CANBERRA社 ・型式 : GC2018	24.50%	別紙に記載	・質量:72.0g ・密度:0.813g/cm ³ ・充填高さ:5.0cm	<cs-134の定量方法> 放出効率が最も大き いエネルギー (604.70keV)での値を、 Cs-134の値として採用 した。 (他のエネルギーも含む 荷重平均値は、データ の検証・確認用としての み使用)</cs-134の定量方法>

試験所 番号	測定方法名	検出器のメーカーと型番	Ge検出器の相対 効率	検出効率(cps/Bq)を求めるために 使用した標準線源の種類、質量、密 度、容器(充填高さ)、核種毎の検 出効率(cps/Bq)、できれば自己吸 収計算方法やソフト名など	試料測定方法:報告シート(1)以 外の、質量、密度、容器(充填高 さ)など	その他のコメント
10	ゲルマニウム半導体検出器に よるガンマ線スペクトロメトリー	Ge検出器GEM 20190 26D1742B	20.29%	使用した核種: Cd-109(88.032keV), Co- 57(122.058keV) Co-57(136.471keV), Ce- 139(165.85keV) Cr~51(320.076keV), Sr~51(514.000keV) Cs-137(661.638keV), Mn- 54(834.827keV) Y-88(898.030keV), Co-60(1173.21keV) Co-60(1332.47keV), Y-88(1836.00keV) 体積線源高さ(5,10,20,30,50mm)	試料高さ:50 mm 試料:72 g 比重:0.796 g/cm3	自己吸収補正、サム効 果補正あり。
11	ゲルマニウム半導体検出器に よる ガンマ線スペクトロメトリー法	オルテック GMX-60-83	65.20%	標準線源:放射能標準ガンマ体積 線源(エポキシ樹脂)EG-ML1725- 1-1~5(Eckert & Ziegler) 校正:標準ガンマ体積線源高さ5段 階(5,10,20,30,50mm) 標準線源情報:別表1 校正に用いた核種:別表2 核種毎の検出効率:別表2 自己吸収計算:セイコー イージーア ンドジー(㈱製「 γ スタジオ」による	試料正味重量は本共同実験の 測定手順書に記載された重量を そのまま用いた。 試料の充填高さ、重量、密度の 情報を入力し、セイコー イージー アンドジー(㈱製解析プログラムの 登録情報(サム効果補正係数、 自己吸収率補正係数)により定 量した。 充填高さ:50mm 重量:0.072kg 密度:0.794g/cm3	解析システム:セイコー EG&G(株) Cs134の定量値につい て 795.76keVのピークは 同核種の801.84keVの ピーク及び、Ac-228の ピークが重なるため、 604.66keV、795.76keV 双方の値に大差が無い ことを確認した上で 604.66keVの値を採用す ることとする。
12	標準物質(しいたけ 高濃度)との比較法	SEIKO EG & G GEM30-70	30%	標準線源:しいたけ認証標準物質 (粉末状, 高濃度)JSAC 0774 使用ソフト: NZMCA(Laboratory Equipment Corp.製)		測定位置は検出器表面 から約1cmの距離で 行った。

試験所 番号	測定方法名	検出器のメーカーと型番	Ge検出器の相対 効率	検出効率(cps/Bq)を求めるために 使用した標準線源の種類、質量、密 度、容器(充填高さ)、核種毎の検 出効率(cps/Bq)、できれば自己吸 収計算方法やソフト名など	試料測定方法:報告シート(1)以 外の、質量、密度、容器(充填高 さ)など	その他のコメント
14	γ線測定	ORTEC GMX25P4	28%	・Cs134とCs137の標準線源は、基 になる線源溶液から100-200 μ L 正 確に秤量したものを100mLの水に滴 下してそれぞれ作製。基になる線源 溶液の放射能濃度は、その溶液で 点線源を作製し、市販の点線源と比 較測定し決定。 ・K40線源は、容量分析用水酸化カ リウム溶液を用いて作製。 ・自己吸収の補正は、分析試料、Cs 溶液、KOH溶液それぞれの γ 線吸 収係数を実測した上で、積分法によ り自己吸収割合を計算し、各試料間 での自己吸収の違い(3.2-3.7%程 度)を補正。	 ・100mLのPE製広ロビン(内径 47.5mm)に試料を充填し (72.10g)、ビンの側面をGe検出器(横型)の前面アクリルキャップに密着させて測定。 ・標準線源も同じ100mLのPE製広ロビンで作成し、同じジオメトリで測定。 	Cs134を含む標準線源 を用いているため、 Cs134のサム補正は本 来なら必要ないが、自己 吸収の違いに起因する 効率の違いによって僅 かに分析試料と標準線 源の間でサム補正量が 異なるので、その違い (0.3-0.6%程度)を計算し 補正。
15	送付されたU8容器重点済みの 魚肉試料をポリエチレン袋に入 れた後、Ge半導体検出器のエ ンドキャップ上に置き、測定。	SEIKO EG&G社 GEM-50 195-P	58.06%	SEIKO EG&G アスタジオにより、自 己吸収計算、サム効果補正等を 行った。標準線源は(社)日本アイソ トープ協会よりU8容器に高さ5cmま で充填された9核種混合体積標準 線源(MX033PP-0011JCSS証明済 み、基準日2013年11月11日12時)を 購入し、使用した。	質量 0.072 kg 密度 0.796 kg/L 容器(充填高さ) 50mm	不確かさ:各核種の放 射能測定に伴う誤差 (の)に計数2を乗じて算 出した。
16	<i>Υ</i> 線スペクトロメータ(ゲルマニウム半導 体検出器)法	オルテック社製 GEM35-70	39.40%	標準線源 質量:97.0g 密度:1.102 g/cm3 容器(充填高さ):U-8(50mm) 検出効率(cps/Bq): ¹⁰⁹ Cd(88.032keV):0.00146 ⁵⁷ Co(122.058keV):0.0400 ⁵⁷ Co(136.471keV):0.00509 ¹³⁹ Ce(165.85keV):0.0348 ⁸⁵ Sr(514.000keV):0.0196 ¹³⁷ Cs(661.638keV):0.0137 ⁵⁴ Mn(834.827keV):0.0138 ⁸⁸ Y(898.030keV):0.0114 ⁶⁰ Co(1173.21keV):0.00895 ⁸⁸ Y(1836.00keV):0.00687 計算ソフト名:Gamma Studio	質量 : 72.0g 密度 : 0.818g/cm ³ 容器 : U−8(充填高さ50mm)	Cs134については放出 比が一番高いエネル ギーの値を採用した。 ブランクのカウント数は Cs134及びCs137は2 <i>σ</i> 以下のためカウント数を ゼロとした。

試験所 番号	測定方法名	検出器のメーカーと型番	Ge検出器の相対 効率	検出効率(cps/Bq)を求めるために 使用した標準線源の種類、質量、密 度、容器(充填高さ)、核種毎の検 出効率(cps/Bq)、できれば自己吸 収計算方法やソフト名など	試料測定方法:報告シート(1)以 外の、質量、密度、容器(充填高 さ)など	その他のコメント
17	γ線スペクトロメトリー	メーカー CANBERRA 型番 GX4018	40%	1)密度の異なるKCL水溶液及び KCL溶液を添加した試料を測定して 1460keVのγ線の食肉試料での計 数効率を求めた。 2)密度の異なる玄米(認証物質)と 食肉試料のCs-134のγ線スペクト ルから、密度と各エネルギーのγ線 についての自己吸収の割合を求め た後、食肉試料の計数効率を求め た。 3)食肉試料の計数効率は、"1"で得 られた1460keVのγ線の計数効率 で、"2"の計数効率を補正して求め た。		
18	ゲルマニウム半導体検出器を 用いたガンマ線スペクトロペト リーによる各種分析法	GC2518(キャンベラ社製)	・Ge検出器の相対	放射能標準ガンマ体積線源(アルミ ナ)((社)日本アイソトープ協会)U8 サイズ	・質量:72.0g ・密度:0.813g/cm3 ・容器(重点高さ):5.000cm	

魚肉

<u></u> 魚肉														
Nuclide	Energy / keV	放出割合 / %	Eff.	Sample weight / kg	測定時間 / sec	cps	1σ	Activity / Bq	1σ	Activity (時間 補正後) / Bq	1σ	Activity conc. / Bq kg ⁻¹	1σ	¹³⁴ Cs+ ¹³⁷ C s / Bq kg ⁻¹
Cs-134	604.7	0.976	8.91E-03	0.07200	103,301	3.52E-02	8.60E-04	4.05	0.10	4.09	0.10	<u>57</u>	1	240
Cs-137	661.7	0.851	8.13E-03	0.07200	103,301	9.12E-02	1.33E-03	13.2	0.2	13.2	0.2	<u>183</u>	3	
K-40	1460.8	0.107	3.61E-03	0.07200	103,301	9.90E-03	3.19E-04	25.6	0.8	25.6	0.8	<u>356</u>	<u>11</u>	
標準 40K														_
サンプル	Energy / keV	「高さ (cm)	γ [%]	KCI 正味の重量 (g)	Activity (Bq)	gps	cps (net)	eff. (1461 keV)	а	b				
KCL (U-8)	1460.8	5.0	10.67	104	1689	180	0.65	3.61E-03	-1.024	6.286				
152Eu														
Live time	keV	cps	err (1σ)	γ [%]	dps	err (1σ)	err (1σ) / %	а	b	Eff.				
39,288	444	0.1507	0.0020	3.148	4.787	0.062	1.30	-1.024	6.286	1.22E-02				
39,288	779	0.3393	0.0029	12.94	2.621	0.023	0.87	-1.024	6.286	6.88E-03				
39,288	867	0.1015	0.0016	4.245	2.390	0.038	1.58	-1.024	6.286	6.16E-03				
39,288	964	0.3132	0.0028	14.61	2.144	0.019	0.90	-1.024	6.286	5.53E-03				
39,288	1,112	0.2536	0.0025	13.644	1.858	0.019	1.00	-1.024	6.286	4.78E-03				
39,288	1,213	0.0247	0.0013	1.422	1.739	0.089	5.09	-1.024	6.286	4.37E-03				
39,288	1,299	0.0252	0.0008	1.623	1.553	0.049	3.18	-1.024	6.286	4.07E-03				
39,288	1,408	0.3077	0.0028	21.005	1.465	0.013	0.91	-1.024	6.286	3.75E-03				

Ge検出器とγ線スペクトロメトリー検出効率に関する情報

 ・感度係数(cps/Bq)を求めるために 使用した標準線源名 	エネルギー依存性 : 日本アイソト- 測定試料形状依存性 : 日本アイソト-	−プ協会製 MX402 53 −プ協会製 CS031U8PP	
・感度係数(cps/Bq)を求めるために他 (cps/Bq)	使用した全ての核種の感度係数	検出効率(cps/ γ)	サム効果や自己吸収補正の有無な ど、校正・測定方法を付記する。
エネルギー依存性(9核種混合点)	線源)		
Cd-109	0.00161	0.0446	測定試料形状依存性は ¹³⁷ Cs容積線
Co- 57	0.0357	0.0418	ー 線を、エネルキー低件住は進合核 種点線源を、それぞれ測定して求め
Ce-139	0.0281	0.0352	──た。なお、 ⁹⁷ Co、 ^{®®} Co及び ^{®®} Yのピー ┃ク効率を求める際には、サム効果の
Cr- 51	0.00191	0.0194	 影響について補正した。測定試料に よるγ線の自己吸収は、試料ごとに
Cs-137	0.00827	0.00972	計算により補正した。また、134Csは サム効果の影響を補正した。
Mn- 54	0.00790	0.00790	
Y-88(898keV)	0.00702	0.00747	
Y-88(1836keV)	0.00391	0.00393	
Co-60(1173keV)	0.00583	0.00584	
Co-60(1333keV)	0.00525	0.00525	
	線源)		-
重量: 9.5g、密度:1.044g/cm ³ 、 容器:U-8(充填高:5.0mm)	0.0287	0.0337	
重量:19.0g、密度:0.994g/cm ³ 、 容器:U-8(10.5mm)	0.0254	0.0298	
重量:38.0g、密度:0.994g/cm ³ 、 容器:U-8(21.0mm)	0.0206	0.0242	
重量:57.0g、密度:1.010g/cm ³ 、 容器:U-8(31.0mm)	0.0177	0.0207	
重量:76.0g、密度:1.018g/cm ³ 、 容器:U-8(41.0mm)	0.0154	0.0181	
重量:88.0g、密度:1.029g/cm ³ 、 容器:U-8(47.0mm)	0.0144	0.0169	

56 / 102

Lab 5: 不確かさの算出根拠

不確かさの亜田	Tuna	相	相対標準不確かさ(%)				
小唯かさの安凶	Туре	Cs-134 (605keV)	Cs-137 (662keV)	K-40 (1461keV)			
計数統計	Α	1.04	0.60	1.97			
ピーク効率校正	В	1.62	1.33	1.49			
減衰補正	В	<0.1	< 0.1	< 0.1			
校正位置の再現性	В	< 0.1	< 0.1	< 0.1			
均質性	В	1.75	1.14	2.07			
ガンマ線放出割合	В	0.08	0.24	1.04			
自己吸収補正	В	0.20	0.18	0.13			
カスケードサム効果補正	В	0.77	0.00	0.00			
相対合成標準不確かさ(k=1)		2.7	1.9	3.4			
相対拡張不確かさ(k=2)		5.4	3.8	6.8			

1.標準線源の種類、高さ、重量、密度

高さ(mm)	重量(g)	密度(g/cm ³)	種類
5.0	9.4	1.061	
10	18.8	1.061	□ 1□ 2 □
20	37.6	1.061	りアルミナ
30	56.4	1.061	WIX旅源
50	94.0	1.061	

2.核種ごとの検出効率

妆话夕	→ 毎々 エネルキ [*] - - - - - - - - - -			感度係数(cps/Bq)					検出効率(%)			
12121	(eV)	<u>ЛХ</u> ЦЦ LL(//)	5.0mm	10mm	20mm	30mm	50mm	5.0mm	10mm	20mm	30mm	50mm
Cd-109	88.03	3.79	0.616	0.539	0.461	0.394	0.306	16.247	14.222	12.177	10.390	8.080
Co- 57	122.06	85.6	14.497	12.633	10.754	9.091	7.014	16.936	14.758	12.563	10.621	8.193
Co- 57	136.47	11.10	1.755	1.506	1.290	1.089	0.824	15.810	13.567	11.620	9.812	7.424
Ce-139	165.85	79.90	10.549	9.244	7.995	6.785	5.254	13.203	11.569	10.006	8.492	6.576
Cr- 51	320.08	10.20	0.729	0.631	0.539	0.457	0.350	7.152	6.185	5.286	4.478	3.433
Sr- 85	514	99.27	4.384	3.793	3.198	2.688	2.078	4.416	3.821	3.221	2.708	2.093
Cs-137	661.64	85.00	2.991	2.557	2.188	1.818	1.394	3.519	3.008	2.574	2.139	1.640
Mn- 54	834.83	100	2.832	2.425	2.057	1.726	1.334	2.832	2.425	2.057	1.726	1.334
Y - 88	898.02	91.29	2.483	2.093	1.770	1.480	1.126	2.720	2.292	1.939	1.621	1.234
Co- 60	1173.21	100	2.045	1.753	1.470	1.236	0.926	2.045	1.753	1.470	1.236	0.926
Co- 60	1332.47	100	1.804	1.559	1.303	1.079	0.820	1.804	1.559	1.303	1.079	0.820
Y - 88	1836.13	99.34	1.349	1.129	0.959	0.795	0.590	1.358	1.137	0.965	0.800	0.594

3.自己吸収計算方法

自己吸収のあるピーク効率を、 ε s、自己吸収のないピーク効率を ε とすると、 ε sと ε の関係式は

 $\varepsilon s = \varepsilon \times f_{abs}$

となる。f_{abs}は自己吸収係数であり、以下の式により求める。

 $f_{abs} = \frac{\int Eff(x) * exp(-\mu x) dx}{\int Eff(x) dx}$

ここに、Eff(x):試料の底面から距離xにおける微厚な円板dxの効率で、Eff=A/(D+x)²

- A : 定数(先の計算式では分母子により相殺される)
- D:検出器の実効中心から試料の底面までの距離(cm)
- μ:着目エネルギーにおける試料の線減弱係数(/cm)

線減弱係数μについては、以下の式によって求める。

 $\mu = \rho \times \{0.6023/M(2 \times \mu_{AI} + 3 \times \mu_{O})\}$

μ:線減衰係数

M:試料の原子量(アルミナ=101.96)

 μ_{AI} :アルミニウム原子の全相互作用断面積

μ₀:酸素原子の全相互作用断面積

4.使用ソフト名

Spectrum Explorer及びGamma Explorer(キャンベラジャパン株式会社)

不確かさの算出については、以下の1~5の不確かさの評価における要因ごとの基本的な考え方を参考に算出した。

1.天秤目盛不確かさの評価

検査品の重量と天秤最小目盛から、下記評価方法にしたがい相対標準不確かさを算出した。

既知の値を利用したため評価項目から除外した

2.定規目盛不確かさの評価

U8容器を用いて高さ補正を行う場合、検査品の高さとその測定に用いた定規の最小目盛から、 下記評価方法にしたがい相対標準不確かさを算出した。

既知の値を利用したため評価項目から除外した

3.標準線源不確かさの評価

標準体積線源のJCSS校正証明書における相対拡張不確かさから、下記評価方法にしたがい相対標準不確かさを算出した。

括 米石	相対拡張不確かさ	証価エデル	不確かさ	相対標準
性類	(%)		(%)	不確かさ
標準線源	۷	校正証明書	V/2	()//2)/100
	(包含係数: <i>k</i> =2)	(標準偏差)	(包含係数: <i>k</i> =1)	(v/2)/100

<標準線源不確かさの評価方法>

例) 相対拡張不確かさV=4.7%の場合: 相対標準不確かさ=4.7/200=0.0235

注1)¹³⁴Csの不確かさ評価においては、便宜上¹³⁷Csの相対拡張不確かさを採用した

注2)⁴⁰Kの不確かさ評価においては、便宜上⁶⁰Coの相対拡張不確かさを採用した

4.効率校正不確かさの評価

効率校正に用いた標準体積線源の測定データより、下記評価方法により相対標準不確かさを算出した。

種類	効率校正に用いた データの計数率 ^(Bq)	評価モデル	計数誤差 (Bq)	相対標準 不確かさ
効率校正	R	実測データの 標準偏差	σ	σ/R

例)¹³⁷Csの計数率=400 (Bq)、計数誤差=2.0 (Bq)の場合:相対標準不確かさ=2.0/400=0.005

注1)¹³⁴Csの不確かさ評価においては、便宜上¹³⁷Csのデータを採用した。

注2)⁴⁰Kの不確かさ評価においては、便宜上⁶⁰Coのデータを採用した。

5.計数誤差の評価

測定結果における放射能濃度と不確かさから、下記評価方法により相対標準不確かさを算出した。

種類	放射能濃度	討価エデル	不確かさ	相対標準							
	(Bq/kg)	計画モブル	(Bq/kg)	不確かさ							
堙 淮 絈	R+ σ	計数誤差	σ	σ/R							
惊华祢源	K± 0	(標準偏差)	0	0 / K							

<計数誤差の評価方法>

例) 放射能濃度が100±5.0Bq/kgの場合:相対標準不確かさ=5.0/100=0.050

6.不確かさの合成

上記の1~5で算出した要因ごとの不確かさを下記の方法により合成し、合成相対標準不確かさおよび拡張不確かさを求めた。

<不確かさの合成方法>

要因ごとの相対標準			対標≥	隼	合成相対標準不確かさ	拡張不確かさ		
不確かさ U (<i>k</i> =1)				(<i>k</i> =2)				
U ₁	U_2	U ₃	U ₄	U_5	$\sqrt{(U_1^2 + U_2^2 + U_3^2 + U_4^2 + U_5^2)}$	2 × U		

Lab 11 別表1 校正に用いた標準線源 高さ5mm

核種	放射能 [※] 相対拡張不確かさ (Bq) (%)		実測充填高さ (mm)	質量 (g)	密度 (g/cm ³)
Pb-210	1.71 × 10 ²	11.2			
Am-241	1.70 × 10 ¹	3.1			
Cd-109	1.44×10^{2}	2.7			
Co-57	9.41 × 10 ⁰	2.3			
Ce-139	1.19 × 10 ¹	2.3			
Cr-51	2.99 × 10 ²	2.4	6.99	9.44	0.735
Sr-85	3.01 × 10 ¹	2.3			
Cs-137	1.16 × 10 ¹	2.3			
Mn-54	1.56×10^{1}	2.3			
Y-88	3.43 × 10 ¹	2.3			
Co-60	1.98 × 10 ¹	2.3			

高さ10mm

核種	放射能 [※] (Bq)	相対拡張不確かさ (%)	実測充填高さ (mm)	質量 (g)	密度 (g/cm ³)	
Pb-210	3.41 × 10 ²	11.2				
Am-241	3.38×10^{1}	3.1				
Cd-109	2.88×10^{2}	2.7				
Co-57	1.88 × 10 ¹	2.3				
Ce-139	2.37×10^{1}	2.3				
Cr-51	5.96 × 10 ²	2.4	12.17	18.81	0.847	
Sr-85	6.00×10^{1}	2.3				
Cs-137	2.30×10^{1}	2.3				
Mn-54	3.11 × 10 ¹	2.3				
Y-88	6.84×10^{1}	2.3				
Co-60	3.94×10^{1}	2.3				

高さ20mm

核種	放射能 [※]		実測充填高さ (mm)	質量 (g)	密度 (g/cm³)
Pb-210	6.80 × 10 ²	11.2			
Am-241	6.75×10^{1}	3.1			
Cd-109	5.74 × 10 ²	2.7			
Co-57	3.74×10^{1}	2.3			
Ce-139	4.72 × 10 ¹	2.3			
Cr-51	1.19 × 10 ³	2.4	22.00	37.52	0.938
Sr-85	1.20 × 10 ²	2.3			
Cs-137	4.60×10^{1}	2.3			
Mn-54	6.19 × 10 ¹	2.3			
Y-88	1.37×10^{2}	2.3			
Co-60	7.87×10^{1}	2.3			

高さ30mm

核種	放射能 [※] 相対拡張不確かさ (Bq) (%)		実測充填高さ (mm)	質量 (g)	密度 (g/cm ³)
Pb-210	1.02×10^{3}	11.2			
Am-241	1.01 × 10 ²	3.1			
Cd-109	8.62×10^{2}	2.7			
Co-57	5.62×10^{1}	2.3			
Ce-139	7.10 × 10 ¹	2.3			
Cr-51	1.79 × 10 ³	2.4	32.61	56.35	0.952
Sr-85	1.80×10^{2}	2.3			
Cs-137	6.90×10^{1}	2.3			
Mn-54	9.30×10^{1}	2.3			
Y-88	2.05×10^{2}	2.3			
Co-60	1.18 × 10 ²	2.3			

高さ50mm

核種 放射能 [※] (Bq)		相対拡張不確かさ (%)	実測充填高さ (mm)	質量 (g)	密度 (g/cm ³)	
Pb-210	1.70 × 10 ³	11.2				
Am-241	1.69 × 10 ²	3.1				
Cd-109	1.44×10^{3}	2.7				
Co-57	9.36 × 10 ¹	2.3				
Ce-139	118 × 10 ²	2.3				
Cr-51	2.97×10^{3}	2.4	52.10	93.87	0.994	
Sr-85	2.99 × 10 ²	2.3				
Cs-137	1.15×10^{2}	2.3				
Mn-54	1.55 × 10 ²	2.3				
Y-88	3.42×10^{2}	2.3				
Co-60	1.97 × 10 ²	2.3				

※ 放射能 基準日 : 2014年1月1日 12時00分

別表2 効率校正に用いた核種および測定効率および近似効率

拉话	ピークエネル	高さ	5mm	高さ10mm		高さ20mm		高さ30mm		高さ50mm	
作及作里	(keV)	測定効率	近似効率								
Pb-210	46.50	0.1933793	0.1882201	0.1718815	0.167548	0.1452067	0.1412922	0.1242082	0.1212545	0.09516462	0.09255011
Am-241	59.54	0.1801772	0.1863777	0.1612282	0.1654806	0.1358258	0.1403282	0.1169985	0.1201963	0.08913521	0.09206402
Cd-109	88.03	0.1805781	0.1834981	0.1568058	0.1622603	0.1358897	0.1388157	0.1156817	0.1185401	0.08907612	0.09129982
Co-57	122.06	0.1746494	0.1654931	0.1558139	0.1473309	0.1310855	0.1258799	0.1108056	0.1075010	0.08485377	0.08309299
Ce-139	165.85	0.1230066	0.1319038	0.1110883	0.1176040	0.09614336	0.1005016	0.08304666	0.08599579	0.06481033	0.06645141
Cr-51	320.11	0.08366717	0.08108520	0.07490621	0.07252754	0.06345125	0.06200737	0.05430856	0.05328030	0.04184133	0.04114582
Sr-85	514.00	0.05517066	0.05711657	0.04877780	0.05120697	0.04235739	0.04379312	0.03685692	0.03774325	0.02869107	0.02913435
Cs-137	661.65	0.04857978	0.04738230	0.04377848	0.04253235	0.03728337	0.03638052	0.03243930	0.03140515	0.02502113	0.02423617
Mn-54	834.83	0.04069078	0.03989370	0.03650413	0.03585100	0.03123218	0.03067029	0.02687218	0.02651508	0.02082585	0.02045791
Y-88	898.03	0.03736408	0.03779666	0.03387019	0.03397859	0.02930928	0.02906986	0.02529449	0.02514317	0.01947485	0.01939808
Co-60	1173.21	0.03178325	0.03101397	0.02841602	0.02791752	0.02394207	0.02388864	0.02071192	0.02069703	0.01598855	0.01596385
Co-60	1332.47	0.02919230	0.02822618	0.02600355	0.02542388	0.02197427	0.02175671	0.01899758	0.01886522	0.01448806	0.01454922
Y-88	1836.00	0.02103321	0.02226592	0.01922905	0.02008683	0.01666314	0.01719313	0.01446632	0.01493862	0.01118742	0.01151748

不確かさの算出は下表のとおり

石碑かさの西田		合成不確かさ					
ተ	唯かでの安凶	Cs-134	Cs-137	K-40			
前処理		0.570%	0.570%	0.570%			
	秤量	0.00261%	0.00261%	0.00261%			
	厚さ	0.570%	0.570%	0.570%			
	均質性	考慮せず	考慮せず	考慮せず			
校正	_	2.72%	2.72%	2.65%			
	厚さ	0.570%	0.570%	0.570%			
	校正用線源	2.40%	2.40%	2.40%			
	幾何条件	考慮せず	考慮せず	考慮せず			
	不感時間	考慮せず	考慮せず	考慮せず			
	測定系の変動	考慮せず	考慮せず	考慮せず			
	計数誤差	0.441%	0.441%	0.398%			
	放出比	0.588%	0.588%	0.000%			
	校正式のフィッテング	0.871%	0.871%	0.871%			
	サム効果補正	考慮せず	考慮せず	考慮せず			
	自己吸収補正	考慮せず	考慮せず	考慮せず			
	減衰補正	0.000029%	0.000029%	0.000029%			
試料測定		1.30%	0.90%	2.41%			
	幾何条件	考慮せず	考慮せず	考慮せず			
	不感時間	考慮せず	考慮せず	考慮せず			
	測定系の変動	考慮せず	考慮せず	考慮せず			
	計数誤差	1.25%	0.69%	2.08%			
	放出比	0.328%	0.588%	1.218%			
	サム効果補正	考慮せず	考慮せず	考慮せず			
	自己吸収補正	考慮せず	考慮せず	考慮せず			
	減衰補正	0.00011%	0.0000033%	0.0099%			
合成標準	不確かさ	3.06%	2.92%	3.63%			
拡張不	·確かさ(k=2)	6.1%	5.8%	7.3%			

・Cs134, Cs137溶液の放射能濃度決定に使用した点線源

①Eu152線源(JAERI Eu427 A-7):不確かさ±4%(3σ)

②混合核種γ線源(DKD製 GF-ML-M-7601 S/N: 1560-47):不確かさ±2.9%(2σ)

(Am241, Cd109, Co57, Ce139, Hg203, Sn113, Sr85, Cs137, Y88, Co60を解析に使用。)

・Ge検出器表面から77mm位置に点線源を置いて各γ線に対する検出効率を測定し

それらの値を指数関数の多項式で最小自乗フィットして検出効率曲線を作成。

検出効率曲線の推定不確かさは、実験値のばらつき具合から±2.0%(1σ)と推定。

・Eu152, Co57, Ce139, Y88, Co60及びCs134の各γ線に対しては、カスケードサムによる計数損失を計算し補正。

計算に使用する全効率は、積分法で計算したエネルギー依存曲線の絶対値をCs137で測定した実験値に合うように調整したものを使用。

・K40線源の放射能強度の不確かさは±1.1%(1σ)。K40の同位体比の不確かさが主因。

分析試料中の放射能強度は、自作した標準線源との間でγ線計数率を直接比較することで算出。

よって、体積線源に対する検出効率曲線を求める必要はなく、その不確かさは加算されない。

Cs134に対するカスケードサムの補正も、同じ形状の標準線源との間でγ線計数率を直接比較しているのでキャンセルされ、不確かさは加算されない。 ただし自己吸収の違いに起因する効率の違いによって試料間でカスケードサムの補正量が僅かに異なるため、その違いを計算し(0.3-0.6%)、補正。 この補正の不確かさは、0.3-0.6%の15%(0.05-0.09%)と推定。

・分析試料、Cs溶液、KOH溶液の密度は、それぞれ約0.72, 1.0, 1.16g/cm3。
 それぞれの試料に対してγ線吸収係数を実測し、自己吸収割合を積分法で計算。
 自己吸収の割合は各試料間で3.2-3.7%程度異なり、この違いを補正。
 補正の不確かさは、この3.2-3.7%の5%(約0.2%)と推定。

・これらの不確かさ(1σ)と計数誤差(1σ)を誤差の伝播式を用いて合成した値(1σ)を2倍してk=2の拡張不確かさとした。

計算シート(1)の拡張不確かさ(k=2)は以下の①~③の式で求められる。

①放射能濃度及び誤差から算出した相対標準不確かさ(%)=誤差(Bq/kg)÷放射能濃度(Bq/kg)×100

②標準線源の137Csの不確かさを合成して得られた最終的な相対標準不確かさ(%)= $\int (①^2 + (標準線源の137Csの相対拡張不確かさ÷2)^2)$

③拡張不確かさ(k=2)(Bq/kg)=放射能濃度(Bq/kg)×②/100×2

計算例

エネルギー 放射能濃度(Bq/kg) 誤差(Bq/kg) 放射能濃度及び誤差から算出した相対標準不確かさ(%) 標準線源の137Csの相対拡張不確かさ(%) Cs-134 605keV 66.7 0.940 0.940 0.940÷66.7×100=1.409 4.7

相対標準不確かさ(標準線源の不確かさを加味した値)(%) 拡張不確かさ(k=2) (Bq/kg) $\sqrt{(1.409^2+(4.7/2)^2)}=2.740$ 66.7×2.740/100×2=3.65

Lab 18 不確かさの算出根拠 (例)

Cs-137

70-	要因	示す値 測定値	タイプ	不確かさ	除 数	標準 不確かさ	相対 不確かさ (%)
標準 物質の 純度	標準純度	95%(拡張)	正規分布 校正証明書 (k=2)	4.6	2	2.3	2.3
全 ステップの 要因	測定の不確かさ	193.8 Bq/kg	正規分布 実験	1.524	1	1.52	0.8

合成不確かさ(%) 2.43 拡張不確かさ(%)(k=2) 4.86

添付資料 6:

(1) Cs-134 と Cs-137 測定値の関係及び試験法による測定値の差異について

Cs-134 と Cs-137 の関係を 95%信頼楕円とともに示した。魚肉につては図 6-1 に、魚骨 につては図 6-2 に、双方を合わせて図 6-3 に表示した(楕円は ISO 13528 に述べられたユー デン図の作成方法による)。標準線源について日本アイソトープ協会の核種混合アルミナ放 射能標準ガンマ体積線源を使用した試験所を赤マークで示した。 Lab 4 は点線源と形状依 存性用には Cs-137 のみの体積線源を使用しているので区別して表示した。Cs-134 の標準 線源を使用した試験所、Eu-152 点線源、しいたけ・玄米標準物質を使用した試験所は別の マークで示した。

図6-1 魚肉 Youden plot; Cs-134 vs Cs-137

図6-3 魚肉 及び 魚骨 Youden plot; Cs-134 vs Cs-137

Cs-134 Bq/kg

添付資料7:報告されたy線スペクトル例

魚肉試料について、2 試験所からのスペクトル全体と Cs-134, Cs-137, K-40 の部分を拡 大した例を示す.

Lab 15 測定時間試料あり:93 298 s(2014-12-27)試料なし:172 752 s (93 298 s に換算表示)(2015-01-13)

Cs-134 605 keV

添付資料 8:参加試験所のSr-90測定条件と結果(魚骨)

試験所 番号	核種	分析方法 (Sr~90分 離法)	標準液	試料番号	半減期 (出典を 記入す る)	分析供試 料(g)	測定器 名·型式	計数効率	測定器の 効率校正 方法	効率決定 に用いた 標準液	Sr担体添 加量 (mg)	Sr回収率 (%)
	Sm 00	イオン交	Sr-90	1–1	20,000	20	低ハ゛ックク゛ラウ ント゛2 π ガ スフ ローカウンター、 LBC4301	34. 6%	Fe-Y共沈 (Y-90測 定)	Sr-90	50	92
1-1	Sr-90	換法	Sr-90	2-1	28. 80y	20	低ハ゛ックク゛ラウ ント゛2 元 カ゛スフ ローカウンター、 LB4200	43. 0%	Fe-Y共沈 (Y-90測 定)	Sr-90	50	94
1-2	Sr-90	イオン交	Sr-90	1–1	28 80v	20	液体シンチ レーションカウン ター、LB-7	66. 4%	チェレン コフ光測 定	Sr-90	50	92
	01 00	換法	Sr-90	2–2	20.009	20	液体シンチ レーションカウン ター、LB-7	66. 4%	チェレン コフ光測 定	Sr-90	50	94
2	Sr-90	シュウ酸		1	28.8	35.0	Canberra	44.4	Sr-90標準 溶液	アイソトープ協 会 から購入し	936.1	85.5
2	31 90	塩法		2	20.0	35.0	LB4200	45.4	より作成した 校正用線源	た Sr-90標準 溶液	936.1	88.8
2	3 Sr-90 イオン交換法 ストロンチム標準溶液 イオン交換法 ストロンチ ム標準溶液 イオン交換法 ストロンチ ム標準溶液 イオン交 準溶液 ストロンチ ム標準溶液 イオン交 準溶液 イオン交換法	ストロンチウ ム標準溶液・ イットリウム標 準溶液	1	29.12 (ICRP	10	低バックグラ ウンド α / β 線放射能自 動測定装 置・LBC- 4302B	0.39435	水酸化鉄(III) 共沈法	放射能標準溶 液 Sr−90 日 本アイソトープ 協会製造 線 源コード SR010	50	99.06	
3		ストロンチウ ム標準溶液・ イットリウム標 準溶液	2	n 38)	10	低バックグラ ウンドα/β 線放射能自 動測定装 置・LBC- 4302B	0.39435	水酸化鉄(III) 共沈法	放射能標準溶 液 Sr-90 日 本アイソトープ 協会製造 線 源コード SR010	50	98.04	
5	Sr-90	イオン交	Wako ス トロンチ ウム煙準	1	アイソ	15. 03	ガスフローカウン ター・アロカLBC- 4212	56. 50	標準溶液を 用いた分析 結果との比 較	アイソトー プ協会放射 能標準溶液	50	87. 3
	01 00	換法	ッユホー 液 1001mg/I	2	帳(11版)	15. 01	ガスフローカウン ター・アロカLBC- 4212	56. 50	標準溶液を 用いた分析 結果との比 較	アイソトー プ協会放射 能標準溶液	50	87.6
6	Sr-00	発煙硝酸	Isotope Products Laboratories 7090 NIST traceable	1	28.74y(アイソ トープチ	15. 08	Tennelec	24. 7%	濃度既知試料 の測定結果か ら計数効率を 求め、SrC03	C欄記載の原	50	93. 39554
0	31-90	法	standard solution Sr- 90 37 kBq, 日本アイソ トープ協会	2	トーフェ 帳 10 版)	15.04	LB5100	24. 5%	の質量との関 係を示す計数 効率曲線を作 成	使用	50	96. 60509
_	0.00	放射性ス トロン分析 よ に た の の の の の の の の の の の の の の の の の の	ストロンチ ウム90標準 潘号:	1回目	Y– 90∶64. 00h, Sr–	5. 00	低バック グランド 放射能自	63%	放射性ストロ ンチウム分析 法・平成15年 (文科 省) に準じ た。	ストロン チウム90 標線 号:	12. 9	64. 7
	21-20	19年 (文科 省) イオン交 換法	10049, SR005, 社 団法人アイ ソトープ協 会校正済)	2回目	190:28.79y (アイソ トープ手 帳・11版)	5. 00	動測定装 置・LBC- 471-Q	63%	¹⁰⁰ 知濃度のY- 90を用いて、 水酸化鉄 (III)共沈法 でY-90の係数 効率を求め た。	0049, 社 ア イソト プ 協会 正 済)	13. 2	72. 2

試験所 番号	核種	分析方法 (Sr−90分 離法)	標準液	試料番号	半減期 (出典を 記入す る)	分析供試 料(g)	測定器 名·型式	計数効率	測定器の 効率校正 方法	効率決定 に用いた 標準液	Sr担体添 加量 (mg)	Sr回収率 (%)
	0.00	イオン交	日本アイ	1	28.74y (アイソ	22. 075	ガスフ ロー型放	70. 8227	標準溶液 使用	SR-010	102	92. 53
8	Sr-90	換法	協会 SR-010	2	トーフ手 帳 10 版)	22. 075	射能測定 装置	70. 8227	標準溶液 使用	SR-010	102	92. 53
	Sr-90	固相抽出 法 (Eichro m SrPasin	⁹⁰ Sr放射 能標準溶 液(JCSS 校正,日	1	28.74 y (アイソ トープ手 帳 10 版」日本	10. 3	低バック グラウン ドβ線定 動 置 (日 立	58.8	放射性ス トロンチ ウム分析 法(文部 科学省	⁹⁰ Sr放射 能標準溶 液(日本 アイソ	15. 1	102. 2
10	01 00)	本アイソ トープ協 会)	2	アイソ トープ協 会 (2001)	9. 7	アロ カ), LBC-4211B	58.8	2003) に 準ずる	トーフ協 会)	15. 1	94. 3
11-1	Sr-90	HDEHPに よる90Y	RI協会製	1	90Y∶64. 0 0h	6. 477	アロカLB- 皿	0. 5429	標準比較	Sr-90	20	89.6
		法	SR005	2	Isotope Table	4. 987	アロカLB- 皿	0. 5429	標準比較	Sr-90	20	86. 4
	0.00	Sr Rad- diskによ	RI協会	1	90S r :28.79	6. 655	アロカLB- 皿	0. 7214	標準比較	Sr-90	0	33. 3
11-2	Sr-90	る固相抽出法	SR005	2	Isotope Table	6. 477	アロカLB- 皿	0. 7214	標準比較	Sr-90	0	35. 4
		イオン交	ストロンチウ ム標準溶液 イットリウム	16554000	⁹⁰ Y:64.0h	20.96	低バックグ ラウンド	0.27265	水酸化鉄	(公 社)JRIA	50	94.6
12	Sr-90	換法	標準溶液 カルシウム 標準溶液	16557800	⁹⁰ Sr:29.12y	20.91	/3 線測定 装置 LBC-471Q	0.27265	共沈法	放射能 標準溶液 SR050	50	95.9
	Sr 00	放 定 リ 助 お 法 一 射 b っ が た ス て ス ス チ	公益財団 法人 日本7イソト- ブ協会製	1	Sr- 90:28.74 年 Y-90 :64.10時	37.6	日カメル アデホリン たが、 たが、 たが、 たが、 たが、 たが、 たが、 たが、 たが、 たが、	50. 9%	分析方法	公益財団 法人 日本7イソ ト-プ協会	50	73. 6
13	Sr-90	トロンチ ウム分析 法 第8章 8.1イオン 交換法に 準拠	^{IX3} 7114A トロンチ ウム分析 法 第8章 放射能標 8.1イオン 準液 交換法に 準拠 ⁹⁰ Sr	2	:64.10時 間 (「アイソ トープチロ 10版」 日 本アイソ トープ協会 (2001))	36.9	グラウン ド放射能 自動測定 装置 LBC-472-Q	50.9% (Y-90)	の概要に 記載	製 放射能標 ⁹⁰ Sr	102 15.1 15.1 20 20 0 0 50 50 50 1 50 50 1 50 50 1 50 1 50 50 50	91.6

試験所 番号	核種	分析方法 (Sr−90分 離法)	標準液	試料番号	半減期 (出典を 記入す る)	分析供試 料(g)	測定器 名·型式	計数効率	測定器の 効率校正 方法	効率決定 に用いた 標準液	Sr担体添 加量 (mg)	Sr回収率 (%)
14	Sr-00	イオン交	沃加细	1	29.70.4	15.07	LBC-	40.4%	Sr標準液値 付値と実計	JCAC分析	50	85.5%
	換法	<u> Ж</u> ЛЦ Ж	2	28.79y	15.06	4202B	43.47	測値からの 算出	11戦(平成 25年度)	50	99.1%	
15 Sr-90	Sr 00	シュウ酸塩	使用した Sr担体溶 液 (100mg/ml)は、試 の硝 な の硝 な の 間 な	1	- 28. 79	30. 01	LBC-	51.2	シュウ酸 イットリ ウム沈殿	Sr-90標 準溶液	1000	32. 39
	01 00	法	いて 文科 省法記載 の 方法に 従い 調製 した。	2		30. 04	4302B	51.2	^{里重を変} 化させ校 正	、山平小小 ト-プ協会 製)	1000	43. 72
		EichroM		1		10. 0368		0. 999	TDCR法	無	0	56.5
16	Sr-90	Sr.resin による抽 出クロマ トグラ		2	28.79y(アイソ トープ手 帳11版)	10. 4457	HIDEX 300SL	0. 999	TDCR法	無	0	54. 7
		フィー		3		10. 2126		0. 999	TDCR法	無	0	60. 5

添付資料

試験所 番号	安定Sr濃 度 (mg/kg)	Ca濃度 (mg/kg)	測定時間 live time(秒)	グロスカ ウント数 N	試料 おの バックンド 調 * 秒	武科かな いときの グロス バックグ ラウンドカ ウント数 ハック シント ・ ・ ・ ・ ・ ・ ・	正味カウ ント数 N-Nb [']	ピーク計 数率 (カウント 数/秒)	測定時の 放射能 Bq	基準日に おける 放射能 Bq	基準日に おける放 射能濃度 (Bq/kg)	拡張不確かさ (<i>k=</i> 2) (Bq/kg)
	2280	283250	6000	424	6000	19	405	0.068	0.20	0.22	11.1	1.5
1-1	2285	280500	6000	493	6000	21	472	0.079	0.18	0.22	11.0	1.2
	2280	283250	16800	4109	15600	1622	2362	0.141	0.21	0.23	11.6	1.0
1-2	2285	280500	16800	4096	15600	1622	2349	0.140	0.21	0.23	11.4	1.0
2	2.39E+03	3.14E+05	30000	4294	24000	107	4160	0.139	0.366	0.436	12	0.40
	2.44E+03	3.16E+05	30000	4420	24000	103	4291	0.143	0.355	0.422	12	0.38
3	2400	310000	3600	180	3600	40.5	139.5	0.039	0.10964	0.1100	11.00	2.54
3	2400	310000	3600	176	3600	40	136	0.038	0.12077	0.1212	12.12	2.83
5	2738		3600	248	3600	85	163	0.045	0.0801	0.1218	8.10	3. 3
5	2738		3600	295	3600	83	212	0.059	0.104	0.1416	9.43	3. 3
6	未測定	未測定	6000	624.4	6000	101.8	523	0.087	2.0E-01	2.0E-01	1.3E+01	1.9E+00
0	未測定	未測定	6000	609.0	6000	101.8	507	0.085	1.9E-01	1.9E-01	1.2E+01	1.7E+00
	1910	311000	3600	85	7200	42	64	0.018	0.0449	0.451	9.0	1.8
	1950	306000	3600	69	7200	36	51	0.014	0.0321	0.0322	6.4	1.7

試験所 番号	安定Sr濃 度 (mg/kg)	Ca濃度 (mg/kg)	測定時間 live time(秒)	グロスカ ウント数 N	試料ときクグ バックンド間 *	ボキかな ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	正味カウ ント数 N-Nb [']	ピーク計 数率 (カウント 数/秒)	測定時の 放射能 Bq	基準日に おける 放射能 Bq	基準日に おける放 射能濃度 (Bq/kg)	拡張不確かさ (<i>k=</i> 2) (Bq/kg)
	(2600)	(320000)	3600	463	3600	20.125	443	0.123	0.2336	0.2344	10.6	1.04
8	(2600)	(320000)	3600	473	3600	20.125	453	0.126	0.2383	0.2391	10.8	1.05
	2529	313178	3600	230	3600	20	210	0.058	0.1	0.1	12.4	0.9
10	2537	311070	3600	200	3600	20	179	0.050	0.1	0.1	12.4	0.9
			* *1回での湯	**]]定時間		** **7回繰り		** 平均值	**	**	**	
11 1			21600						0. 04696	0. 04718	7. 28	3. 00
			21600						0. 03463	0. 03479	6. 98	3. 83
11-2			21600						0. 11173	0. 11224	16. 9	4.1
			21600						0. 09337	0. 09380	14. 5	3. 7
	2460	313000	7200	436	14400	40	416	0.058	0.241	0.241	11.5	1.5
12	2460	313000	7200	474	14400	40	454	0.063	0.265	0.265	12.7	1.6
			6000	980	6000	44	936	0.156	0.306	0.465		
	2530	296000	6000	978	6000	44	934	0.156	0.306	0.499	12.7	1.79
			6000	855	6000	44	811	0.135	0.266	0.466		
13			6000	1259	6000	44	1215	0.203	0.398	0.492		
	2560	292000	6000	1125	6000	44	1081	0.180	0.354	0.470	12.9	1.69
			6000	1039	6000	44	995	0.166	0.326	0.466		
	1								(1)	(2)	(3)	

試験所 番号	安定Sr濃 度 (mg/kg)	Ca濃度 (mg/kg)	測定時間 live time(秒)	グロスカ ウント数 N	試料 お ボックク デウンド 間 * 秒	ボイかな ・ ・ ・ ・ ・ ・ ・ ・ ・	正味カウ ント数 N-Nb [']	ピーク計 数率 (カウント 数/秒)	測定時の 放射能 Bq	基準日に おける 放射能 Bq	基準日に おける放 射能濃度 (Bq/kg)	拡張不確かさ (<i>k=</i> 2) (Bq/kg)
14	2536	311450	3600	227	3600	26	201	0.0558	0.129	0.147	11.4	1.22
14	2536	311450	3600	273	3600	18.5	254.5	0.0707	0.164	0.211	14.1	1.51
15	2330	312000	3600	237	3600	28.5	209	0.058	0.4083	0.4104	13.7	2.2
	2330	312000	3600	302	3600	28.5	274	0.076	0.3787	0.3807	12.7	1.7
			10800	4285	10800	3674	612	0.05755	0.0576		11.8	3. 5
16	2557	31.99	10800	4245	10800	3674	572	0.05378	0.05383		11.4	3. 6
			10800	4302	10800	3674	629	0.05914	0.0592		11.9	3. 4

添付資料

試験所 番号	分析方法の概要	参考文献(出典)
1-1	試料を分取し、Sr担体を50mg添加後に酸分解し、炭酸塩、シュウ酸塩を生成して分離した。イオン交換樹脂で分離、クロム酸処理を行い、スカベンジングした。 回収率は前処理した溶液から少量分取してICP-AES 測定により求めた。 回収率計算のために必要な、試料に含まれる安定 Srla、灰1gを酸分解し、希釈してICP-AESにて測定し	文部科学省放射能測定法シリーズ「放射 性ストロンチウム分析法」(平成15年11月 改訂) 文部科学省放射能測定法シリーズ「液体シ ンチレーションカウンタによる放射性核種 分析」(平成8年3月改訂)
1-2	/こ。 スカベンジングから2週間以上経過した後、液体シンチ レーションカウンタによりチェレンコフ光測定を行った。 チェレンコフ光測定実施後にミルキングを行い、低 バックグラウンド2πガスフローカウンターにより測定し た。また、測定は複数回行い、Y-90の減衰を確認し た。	干減期について: BIPM-5 Table of Radionuclides Vol.3
2	文部科学省放射能測定シリーズ2「放射性ストロンチ ウム分析法 第8章灰試料」に記載されているシュウ 酸塩法に準じて分析を行った。試料のマウントには シュウ酸イットリウム沈殿法を用いた。試料のマウントには び回収率を求めるための安定Sr、Caの測定にはすべ TICP-AESを使用した。測定装置の校正は、Sr-90標 準溶液(アイソトープ協会証明書番号 第08-0587号) を用いて作成したシュウ酸イットリウム線源により実施 した。	文部科学省 放射能測定法シリーズ 2「放 射性ストロンチウム分析法」 日本アイソトープ協会 「アイソトープ手帳」 第11版
3	灰試料に10 mg/mlストロンチウム担体溶液を5 ml添加し、 王水及び硝酸で酸分解後、塩酸で抽出・ろ過して試料溶液 を得た。この試料溶液にカルシウム担体溶液(安定カルシ ウム量の少ない試料にのみ添加)、水酸化ナトリウム、炭 酸ナトリウムを添加して加熱することで、炭酸塩沈殿を生成 させた。炭酸塩沈殿を遠心分離により回収し、塩酸で再溶 解後、シュウ酸及びアンモニア水を添加しシュウ酸塩沈殿 を生成させた。シュウ酸塩沈殿を吸引ろ過により回収し、 600°Cで3時間焼成後、塩酸で再溶解・ろ過した試料溶液を 陽イオン交換カラムに負荷	文部科学省 放射能測定法シリーズ2 放 射性ストロンチウム分析法 (イオン交換法 および水酸化鉄(町)共沈法)
5	参考文献のイオン交換法に準ずる。	放射能測定法シリーズ 放射性ストロンチウム分析法平成15年改 訂 (文部科学省)
6	炭酸塩、シュウ酸塩沈澱、重クロム酸バリウム沈澱、 鉄沈澱、発煙硝酸法により化学分離、炭酸ストロンチ ウムとして、ろ紙ばさみにより固定する。放射平衡後、 低バックグラウンドガスフローカウンターにより測定。	M. Otsuji-Hatori, Y. Igarashi & K. Hirose, J. Environ. Radioactivity, 31, 143-155, 1996, および気象研究所技術報告第36号ほか
7	文科省の放射性ストロンチウム分析法(平成15年改 訂版)に沿って分析を行った。灰試料を105°Cで2時間 乾燥後、5.0g(n = 3)を秤量した。硝酸20 mLを加え、 Multiwave PRO(Anton Paar GmbH,Graz, Austria)に おいて高温高圧下で酸溶解した。試料溶液はビー カーに移し、ホットプレート上で蒸発・乾固させ、塩酸 (1+1)を適量加えて1時間以上高温下に置いた。ろ過 後、安定ストロンチウムを加え、炭酸塩共沈および シュウ酸塩共沈を行った。試料溶液は、陽イオン交換 樹脂カラム(Dowex, 50W-X8, 26 x3 cm i.d.)に供した。 スカベンジング後、炭酸塩共沈を行い、ろ過後に得ら れた沈殿物を2週間放置した。ミルキング後、低バック グラウンド放射能測定装置LBC-471-Q(ALOKA Co., Ltd, Tokyo, Japan)で測定した。 ストロンチウムの回収率およびカルシウム濃度の測 定は、ICP-AESを用いて行った。	放射性ストロンチウム分析法・平成15年改言

試験所 番号	分析方法の概要	参考文献(出典)
8	試料を電気炉で灰化し、ストロンチウム担体を加えた 後に、塩酸により、加熱溶解する。ろ液をアルカリ性に した後、炭酸ナトリウムを加えて、沈殿を生成する。塩 酸に溶解した後、蓚酸を加えて生成した沈殿を塩酸で 溶解。Na型強酸性陽イオン交換樹脂カラムに通し、 陽イオンを吸着させる。メタノール等で洗浄後、酢酸ア ンモニウムで溶出し、乾固後、塩化鉄を加えて、Y-90 をスカベンジする。ろ液に炭酸アンモニウムを加えて 炭酸ストロンチウムの沈殿を得る。これからストロンチ ウムの回収率を求める。2週間以上放置し、ミルキン グ用の炭酸ストロンチウムの沈殿を得る。塩酸に溶解 した後、イットリウム担体の入った塩化鉄を加え、得ら れた水酸化鉄の沈殿に含まれるY-90のβ線をガスフ ロー型放射能測定装置で計測する。	放射性ストロンチウム分析法(放射能測定 法シリーズ 2)、文部科学省 科学技術・ 学術政策局 原子力安全課 防災環境対 策室 平成15年改訂
10	別紙	放射性ストロンチウム分析法 平成15年改 訂 文部科学省 科学技術・学術政策局 原 子力安全課 防災環境対策室
11-1	1. 化学分離 魚骨灰試料を量りとり、Y担体を加え、 王水で分解後、希塩酸に溶解した。水で希釈し、Yを HDEHPトルエンを用いて抽出した。6MHCIで逆抽出 し、アンモニア水で水酸化物沈殿を生成させた。沈殿 を遠心分離し、硝酸に溶解して測定試料を調製した。 2. 測定 液体シンチレーションカウンタでY-90のチェ レンコフ光を測定した。120分三回の測定値から放射 能を計算した。 3. 化学回収率 Y-88トレーサを添加し、測定試料を ゲルマニウム検出器で Y 線測定して求めた。	文部科学省:放射能測定法シリーズNo.23: 液体シンチレーションカウンタによる放射性 核種分析法(1996)
11-2	 化学分離 魚骨灰試料を量りとり、王水で分解後、 希塩酸に溶解した。2M硝酸で希釈し、Sr Rad-diskを4 枚重ねてSrを抽出した。クエン酸アンモニウム溶液で 逆抽出し、これを測定パイアルに移し、これにSr抽出 シンチレータを加えて測定試料を調製した。 測定 液体シンチレーションカウンタでY-90のチェ レンコフ光を測定した。120分三回の測定値から放射 能を計算した。 化学回収率 Y-88トレーサを添加し、測定試料を ゲルマニウム検出器でγ線測定して求めた。 	1.厚生労働省: 緊急時における食品中の放 射能マニュアル (2002) 2.F. Heynen, E.Minne, S.Hallez: ["] Empore strontium rad disks: validation procedure for strontiumu- 90 analysisin in radioactive
12	文部科学省放射能測定法シリーズ2「放射性ストロン チウム分析法」(平成15年改訂)に準じて行った。	半減期:放射線データブック(s57.初版)分 析法:文部科学省放射能測定法シリーズ2 「放射性ストロンチウム分析法」(平成15年 改訂)
13	 (分離方法) 放射線測定シリーズ2第8章8.1イオン交換法に準じて Sr-90を分離した。 (測定方法) 放射線測定シリーズ2第9章9.4.1.1水酸化鉄(皿)供沈 法によりY-90を測定した。測定は2πガスフローカウン タを用いて100分間測定を3回行った。 (濃度計算) Sr-90濃度は3回測定の平均値とした。 (回収率測定方法) Srの回収率は、試料溶液の一部を分取し、ICP発光分 光分析法を用いて測定、算出した。 (計数効率測定) Sr-90標準液を用いて水酸化鉄(皿)供沈法によりY-90 を分離し、2πガスフローカウンタを用いて放射能を測 定した。得られたY-90の計数率を、標準液のSr-90量 (Bq)で除して計数効率(%)を求めた。 ①測定時の 放射能Bq欄は測定時のY-90の値を示す。②基準日 における放射能Bq欄はY-90の減衰、Y-90の成長率、 Sr-90減衰、回収率などの補正後の値を示す。③放射 能濃度は3回測定の平均値とした。 	放射能測定法シリーズ2「放射性ストロン チウム分析法」平成15年改訂 文部科学省 科学技術・学術政策局原子力安全 課防 災環境対策室

試験所 番号	分析方法の概要	参考文献(出典)
14	別紙、分析フロー図による	アイソトープ手帳11版(公益社団法人日本 アイソトープ協会)
15	酸分解→炭酸沈殿分離→沈殿物溶解→シュウ酸沈 殿分離→シュウ酸沈殿を 灰化→灰化物溶解→バリウム沈殿作製→ろ過(ろ液 回収)→炭酸沈殿分離 →水酸化鉄沈殿作製[スカベンジング]・・・(ICPにより ストロンチウム回収率測定、2週間以上放置) 2週間以上放置後、シュウ酸イットリウム沈殿法を用い てミルキング処理(Y-90分離)し放射能を測定。 測定後、イットリウム担体の回収率を求めた。測定器: 低バックグラウンド放射能自動測定装置(日立アロカメディカル 社製)	分析方法:文部科学省放射能測定法シリー ス2 放射性ストロンチウム分析法 平成15年 改訂 半減期:公益社団法人日本アイソトープ 協会発行 アイソトープ手帳11版
16	試料を硝酸、過酸化水素水で分解した後、溶液のpH を4付近に調節しりん酸カルシウム沈殿を生成した。ろ 過した沈殿を硝酸で溶解し、8M硝酸酸性とし、 Eichrom Sr-Specカラムを用いてSrを分離した。Srフラ クションを2週間以上放置し、Y担体5mgを加えて、アン モニア水によりY(OH)3を沈殿させた。Y(OH)3をNo5A でろ過し、Srと分離した。ろ紙上のY(OH)3を塩酸で溶 解し、回収した。最終的にYフラクションを5mLの0.5M HCIに溶解し、シンチレーションバイアルに移した。乳 化シンチレーター14mLと混合した後、HIDEX 300 SL 液体シンチレーションカウンターでY-90を測定した。 Sr、Yの回収率はICP-OESで測定した。	

添付資料9:共同実験参加試験所の測定条件と結果(Sr-90)

(1) 試験所10、14の分析方法の概要(別紙)を次ページ以降に示す。

(2) Sr-90 と試料量との関係について

Sr-90 測定のための必要な試料量について、"平成 15 年改訂文部科学省 放射能測定法シ リーズ 2「放射性ストロンチウム分析法」"によると、分析目標レベルが 0.02 Bq/kg の場合、 生試料 1 kg が必要と記されている。一方、試料中のカルシウムは最大 5 g と記されている。 今回の試料は生魚 511 kg から骨 78 kg を採取し、灰化して 7 kg としている。この指針か らは必要な試料量を決めることはできなかったので、共同実験においては試料量を規定し なかった。実際に使用された試料量は試験所により 5 g から 37 g であった。試料量と Sr-90 測定値の関係を図 9-1 に、試料量と正味カウント数の関係を図 9-2 に示した。

Lab 10 分析方法の概要

量り取った試料を2分割し、片方にSr担体(Sr15mg)を添加する.その後、王水(40ml)により加熱分解を行い最終的に乾固させる.乾固後は硝酸(30ml)を新たに添加して加熱溶解させる(5時間程度).硝酸による加熱溶解を終えたら、溶液をガラスろ過器でろ過し、ろ液の硝酸濃度を8Mに調整する.8Mに調整した各試料から一部を分取し、ICP-AESにて安定Sr・Ca濃度を測定する.測定結果から、試料中の安定Sr・Ca濃度および酸分解におけるSr回収率の算出を行う.

2, 試料中 Sr の固相抽出

各 8M 硝酸溶液を1つに混ぜ合わせた後, Sr Resin カラム(12g, PP 製カラム: 60 ml, 3 cm φ ×
15. 5cm)に通水させる. その後, 8M 硝酸 250ml でリンス, 0.05M 硝酸 250ml で溶離を行う.

3, 固相抽出の溶離液の水酸化鉄共沈処理

溶離液に Fe+Y 担体(Fe5mg, Y0.05mg)と塩化アンモニウムを添加する. その後, アンモニア 水で pH を 8 以上にし,加熱して水酸化鉄沈殿を生成, 熟成させる. その後, ガラス繊維濾紙でろ過し, 沈殿物を除去する. ろ液は塩酸で酸性にしたのち,一部を分取して安定 Sr 濃度の測定(ICP-AES)を 行い, Sr 分離過程(手順2,3)における Sr 回収率を算出する. なお,この処理の終了時をスカベン ジング時刻とする.

*処理全体における安定 Sr 回収率は酸分解時(手順1)と Sr 分離過程(手順2,3)を掛け合わ せて算出する. ミルキング時の安定 Sr 回収率は 100%とする(事前にミルキング時の回収率の評価を行 い,回収率が 100%とみなせることを確認済み).

4,2週間のY成長待ち

5, ミルキング(水酸化鉄共沈法, 文科省 2003 の手順に準ずる)

2週間以上保管した試料に Fe+Y 担体(Fe5mg, Y0.1mg)と塩化アンモニウムを添加する.その 後、アンモニア水で pH を 8 以上にし、加熱して水酸化鉄沈殿を生成、熟成させる.沈殿物はろ集した 後に塩酸で溶解させる.溶解液に塩化アンモニウムを添加し、再度上記の手順を行う.最後に、溶解液 に塩化アンモニウムを添加し、水酸化鉄沈殿を生成させるまでを上記の手順に従って行う.次いで、セ ルロース製のフィルターに沈殿をろ集する.沈殿物を集めたフィルターを試料皿に糊付けして乾燥させ たのち、コロジオンを滴下し再度乾燥させる.なお、1 回目の水酸化鉄沈殿生成操作が終了した時点を ミルキング時刻とする.

6,低バックグラウンドガスフローカウンターで測定

作成した測定用試料は1回の測定を60分とし、7回繰り返し測定を行う.

*分析法の確認

本手法における Sr 分離過程(Sr Resin+水酸化鉄共沈)の評価については, JAPANPT (2013:土 壌, 2014:水道水)においてともに final score が A (accepted) であり, Sr の分離・精製,他の放射 性核種の除去について大きな問題はない.また,生物,海水,河川水,土壌に関して 90Sr 添加実験を 行い,計算値と分析値はほぼ一致(分析値/計算値=0.9~1.1)することも確認済みである.従って,未 発表(投稿準備中)ではあるが,本分析法は実試料の分析に適用可能である.

*参考文献

文部科学省(2003) 放射性ストロンチウム分析法

灰中のストロンチウム分析フロー図

ストロンチウム90分析における不確かさの求め方

- 1 試料の秤量
- 1.1 天びんの不確かさ

天びんの不確かさには、(1)目盛りの不確かさ、(2)繰り返しの不確かさ、(3)偏置加重の不確か さ、(4)温度の変動による不確かさ、(5)校正分銅の不確かさ、(6)数字の丸めによる不確かさがあ る。

資料によると、天びんの不確かさは、1目量の1.3倍~2倍であることから、本法では、天びんの不確かさを1目量の2倍とし、測定試料重量との比を相対標準不確かさとする。

1目量×2	試料量(g)	分布	相対標準 不確かさ
0.02	15		0.133%

1.2 天秤の繰り返し精度

天秤の秤量精度の資料がない場合は、繰り返し測定により不確かさを求める。実試料や測 定重量に近い重量の標準分銅を用いて繰り返し測定を行う。10回程度繰り返し測定を行い, その平均値および標準偏差を算出し、相対標準不確かさを求める。

番号	(g)	
1	15.06	
2	15.06	
3	15.06	
4	15.07	
5	15.07	平均(g)
6	15.06	15.07
7	15.06	標準偏差(g)
8	15.07	0.005
9	15.07	相対標準偏差(%)
10	15.07	0.03%

и2

u1

試料秤量の不確かさ	$\sqrt{u_1^2 + u_2^2}$	0.138%	иЗ
-----------	------------------------	--------	----

- 2 キャリア溶液の調製・添加
- 2.1 試料に添加するキャリア溶液の調製

天びんの1目量(g)×2	試料量(g)	分布	相対標準不確かさ	
0.02	15		0.133%	и4
硝酸ストロンチウム試薬の純度		矩形分布(√3)		
98%		1.73	1.155%	и5
フラスコの許容誤差(±mL)	(mL)	矩形分布(√3)		
0.3mL	1000	1.73	0.017%	и6
温度、浮力及び気圧の影響:温度変化が±3℃のばらつきは0.04%程度 である。ガラス製体積計(JIS R3505-1994)より			0.04%	и7
キャリア溶液の調製	$\sqrt{u_4^2 + u_5^2} +$	$-u_{6}^{2}+u_{7}^{2}$	1.163%	и8

2.2 キャリア溶液の添加

ストロンチウム溶液(10mg/mL)を試料に添加するときの不確かさ。海水は添加しない。

ホールピペットの許容誤差 (±mL)	ホールピペット 容量(mL)	分布	相対標準不確かさ	
		矩形分布√3		
0.01	5	1.73	0.115%	и9
温度、浮力及び気圧の影響:温度変化が±3℃のばらつきは0.04%程度 である。ガラス製体積計(JIS R3505-1994)より		0.04%	u10	
キャリア溶液の添加	$\sqrt{u_9^2}$ +	$-u_{10}^2$	0.122%	u11

3 化学回収率

3.1 ICP-AESによるストロンチウムの測定 ←支所は測定していないので、評価しない(重量法で評価)

許容誤差(±mL)	フラスコ・ピペット 容量(mL)	分布	相対標準不確かさ	
		矩形分布√3		
	100	1.73	0.000%	
	1	1.73	0.000%	
	50	1.73	0.000%	
	1	1.73	0.000%	
	50	1.73	0.000%	
希釈による相対標準不確かさ			0.000%	u12
Sr標準溶液の成績書に記載されて いる拡張不確かさ(%)	包含係数			
	2		0.00%	u13
検量線(「ストロンチウムー6」ページの検	量線の不確かさ」。	とり)		u14
	平均値(ppm)	相対標準偏差 (ppm)		
繰り返し測定の不確かさ(n=10)			#DIV/0!	u15
試料中Sr濃度の測定(安定Srの不確かさ)				u16
化学回収率	$\sqrt{u_{12}^2 + u_{13}^2 + u_{14}^2}$	$+ u_{15}^2 + u_{16}^2$	#DIV/0!	u17

3.2 重量法による回収率の測定

SrCO₃の沈殿をグラスフィルターで秤量し、添加したストロンチウム量との比から回収率を測定する。このとき、グラスフィルターの重量と沈殿+グラスフィルターの重量を測定する。秤量の不確かさは1. 試料の秤量と同様である。小さいので無視できる。

グラスフィルターと沈殿量(g)	1目量(g)×2	回数	相対標準不確かさ	
38.0000g	0.00002g	2	0.000074%	u18

4 測定試料作製

ミルキング操作で水酸化鉄沈殿と共沈したイットリウムを捕集し、Sr-90娘核種のY-90を測定し、Sr-90濃度を求めている。この時の鉄と共沈するイットリウムの回収率を求め、試料作製時の不確かさとした。

測定試料を水酸化鉄共沈法で作製し、Y-90を測定している機関については、この値を使用 する。

試料作製(ミルキング操作における水酸化鉄共沈イットリウム捕集)	2.7%	u19
---------------------------------	------	-----

5 測定器の校正

計数効率は、値付けされた標準線源溶液から測定試料を調製して求める。

Sr-90標準溶液の成績書に記載されている拡張不確かさ(%)		包含係数	相対標準不確かさ	
1.3%		2	0.7%	u20
ホールピペットの許容誤差(±mL)	ホールピペット容量(mL)	矩形分布√3		
0.03	25	1.73	0.069%	u21
温度、浮力及び気圧の影響:温度すである。ガラス製体積計(JIS R3505	を化が±3℃のばら 5-1994)より	つきは0.04%程度	0.04%	u22
計数値(60分)	7554	カウント		
BG(60分)	30	カウント		
正味計数率	125.4	cpm		
計数誤差	1.45	cpm	1.16%	u23
標準試料(9試料)のバラツキ			1.53%	u24
測定器の校正	$\sqrt{u_{20}^2 + u_{21}^2 + u_2^2}$	$u_{22}^2 + u_{23}^2 + u_{24}^2$	2.03%	u25

6 不確かさの合成

不確かさの要因	相対標準不確かさ
試料の秤量	0.14%
キャリア溶液の調製	1.16%
キャリア溶液の添加	0.12%
化学回収率	0.00%
測定試料の作製	2.70%
測定器の校正	2.03%
相対合成標準不確かさ	3.58%

	иЗ
	u8
	u11
	u17
	u19
	u25
<i>(u18</i> は極めて小さいの ⁻	で無視)

安定Srの分析

1. 試料の秤量

天びんの1目量(g) × 2	試料量(g)		相対標準不確かさ	
0.00002		1		0.002%	u1
番号	(g)				
1	1.13472				
2	1.13474				
3	1.13476				
4	1.13473				
5	1.13472	平均值(g)			
6	1.13472	1.13473			
7	1.13474	標準偏差(g)			
8	1.13473	0.00001			
9	1.13471	相対標準偏差(%)			
10	1.13472	0.00128			
天秤の繰り返し	精度			0.00886%	и2
安定Srの分	折	$\sqrt{u_1^2}$ +	$- u_{2}^{2}$	0.0091%	иЗ

2. 測定試料の調製

許容誤差(±mL)	フラスコ・ピペット 容量(mL)	分布	相対標準不確かさ	
0.08	100	矩形分布(1.73)	0.046%	и4
温度、浮力及び気圧の影響:温 度である。ガラス製体積計(JIS	度変化が±3℃のば R3505-1994)より	らつきは0.04%程	0.04%	и5
0.1	100	矩形分布(1.73)	0.058%	иб
温度、浮力及び気圧の影響:温度変化が±3℃のばらつきは0.04%程 度である。ガラス製体積計(JIS R3505-1994)より			0.04%	и7
0.01	3	矩形分布(1.73)	0.193%	u8
温度、浮力及び気圧の影響:温度変化が±3℃のばらつきは0.04%程 度である。ガラス製体積計(JIS R3505-1994)より			0.04%	и9
測定試料の調製	$\sqrt{u_4^2 + u_5^2 + u_6^2} +$	$u_{7}^{2} + u_{8}^{2} + u_{9}^{2}$	0.22%	u10

3. ストロンチウム標準溶液の調製

Sr標準溶液の成績書に記載 されている拡張不確かさ(%)	包含係数	相対標準不確かさ	
0.3%	2	0.15%	u11
検量線用の溶液調製の不確かさ		3.80%	u12
標準溶液の調製	$\sqrt{u_{11}^2 + u_{12}^2}$	3.80%	u13

4. ICP-AESを用いた安定Srの測定

	相対標準不確かさ	
繰り返し測定の不確かさ	1.22%	u14

5. 不確かさの合成

相対合成標準不確かさ	$\sqrt{u_3^2 + u_{10}^2 + u_{13}^2 + u_{14}^2}$	4.00%	u15
------------	---	-------	-----

	T	1		The second secon				
核 種	半減期	壊変形式	おもなβ線(または α線)のエネルギー (MeV)と放出割合	おもな光子のエネル ギー(MeV)と放出割合	内部転換 電子の 放出割合 〔%〕	実 効 線 (空気衝突) 1cm 線量 10keV以上	量率定数 カーマ率定数) 当量率定数 30keV以上	おもな生成反応
^{87m} Sr†	2.815h	IT	99.7%	0.389- 82.0%	17.7	0.0460	0.0456	86 Sr(n, $\gamma)^{87m}$ Sr
	娘 ⁸⁷ Rb	EC	0. 30%	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$(0.\ 0537)$ $0.\ 0567$	(0.0430) 0.0545	$\begin{bmatrix} EC, \beta^+ \\ 87Y \xrightarrow{87m} 87m Sr \\ 79.8h \end{bmatrix}$
⁸⁹ Sr †	50. 53d	β^{-}	1.495 - 100%	0. 909- 0. 0096% ^{89m} Y		*1.14×10 ⁻⁵		88 Sr(n, γ) 89 Sr
	娘 * ^{89m} Y					$ *(1.13 \times 10^{-5}) $ $ *1.33 \times 10^{-1}$	同左	$U(n, f)^{89}Sr$
⁹⁰ Sr †	<mark>28.79y</mark> 娘 ⁹⁰ Y	β-	0.546-100%					$U(n, f)^{90}Sr$
⁹¹ Sr	9.63h 娘 * ^{91m} Y ⁹¹ Y	β-	0.640- 2.1% 1.127- 35.2% 1.402- 25.4% 2.054- 3.4% 2.707- 28.9% 他	0. 275- 1.0% 0. 556- 55.3% 91my 0. 620- 1.8% 0. 652- 3.0% 0. 653- 8.0% 0. 750- 23.7% 0. 926- 3.9% 1.024- 33.5%	$\begin{array}{c} 0.\ 013\\ 3.\ 0\\ 0.\ 013\\ 0.\ 030\\ 0.\ 020 \end{array}$	*0.135 *(0.135) * 0.160	同左 *(0. 133) * 0. 159	U(n, f) ⁹¹ Sr
86mY	48 m 娘 ⁸⁶ Y	β^+ EC	1. 481- 0. 44% 0. 25% 99. 3%	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.36 5.6	0. 0314 (0. 0307) 0. 0382	0. 0313 (0. 0273) 0. 0373	85 Rb(α , $3n\gamma$) 86m Y
86Y	14.74h	β^+	0.900-1.1% 1.033-1.9% 1.162-1.3% 1.221-11.9% 1.545-5.6% 1.736-1.7% 1.988-3.6% 3.141-2.0% 他	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.\ 027\\ 0.\ 022\\ 0.\ 014\\ 0.\ 019\\ 0.\ 022\\ 0.\ 041\\ 0.\ 013\\ \end{array}$	0. 448 (0. 485) 0. 530	0. 447 (0. 443) 0. 522	⁸⁵ Rb(α, 3nγ) ⁸⁶ Υ

95 / 102

- 40 -

図9-1 共同実験での試料量とSr-90測定値

図9-2 共同実験におけるSr-90測定用試料量と正味カウント数(N-Nb')

2015.3

The Japan Society for Analytical Chemistry 日本分析化学会

認証書

Certified Reference Material

JSAC 0781 (魚肉, U8 容器) JSAC 0782 (魚肉, 100 mL 容器) JSAC 0783 (魚肉, 1 L 容器)

JSAC 0784 (魚骨, U8 容器) JSAC 0785 (魚骨, 100 mL 容器)

魚類認証標準物質(粉末状・灰状) 放射能分析用

本標準物質は、セシウム 134 (¹³⁴Cs), セシウム 137 (¹³⁷Cs), カリウム 40 (⁴⁰K)及 びストロンチウム 90 (⁹⁰Sr)の放射能濃度が認証された魚肉(粉末状)及び魚骨(灰状)の魚 類試料で、JIS Q 0035 (ISO Guide 35)に規定される共同実験方式を用いて認証値を決定した ものである.

JSAC 0781~0785 はγ線スペクトロメトリーによる¹³⁴Cs, ¹³⁷Cs 及び⁴⁰K の放射能分析の妥 当性確認,測定器の精度管理などに用いることができる.

尚, JSAC 0784 及び 0785 は ⁹⁰Sr の放射能分析の妥当性確認並びに測定器の精度管理などに 用いることができる.

認証値 注1〕	基準日明	寺(日本時間) 2	2014年11月1日	0時0分0秒	
標準物質 番号	部位	成分	放射能濃度 Bq/kg	拡張不確かさ (<i>k</i> =2) ^{注2)} Bq/kg	室間再現 標準偏差 (<i>SD</i>) ^{注3)} Bq/kg
JSAC 0781 JSAC 0782 JSAC 0783	魚肉	^{134}Cs	62	5	4
		^{137}Cs	196	14	7
		$^{40}\mathrm{K}$	349	29	19
JSAC 0784 JSAC 0785	魚骨	^{134}Cs	141	10	6
		^{137}Cs	445	29	12
		⁴⁰ K	783	43	25
		$^{90}\mathrm{Sr}$	11.5	1.2	2.1

^{注1)}認証値は、水分を含んだ試料質量をもとに計算している.

^{注2)} 拡張不確かさは、合成標準不確かさに包含係数 k=2 を乗じたもので、信頼の水準約 95 %に 相当する.

^{注3)}室間再現標準偏差は、認証値決定のために共同実験に参加した試験所の測定値の平均値を基 準として求めた標準偏差である.

参考値^{注4)} 魚骨試料の安定ストロンチウム及びカルシウムの濃度を参考値として示す.

標準物質 番号	成分	濃度 g/kg	室間再現 標準偏差 (<i>SD</i>) ^{注5)} g/kg
JSAC 0784	Sr	2.42	0.20
JSAC 0785	Ca	305	13

^{注4)}参考値は、水分を含んだ試料質量をもとに計算している.

^{注5)}室間再現標準偏差は、認証値決定のために共同実験に参加した試験所の測定値の平均値を基 準として求めた標準偏差である.

使用方法と使用上の注意

- JSAC 0781 及び JSAC 0784 は、それぞれ 72.0 g、97.0 gの試料を U8 容器(内径 48 mm) に充てんした後、中蓋を入れ、上蓋で固定されている。容器を故意に振動・転倒させて試料 を攪拌することを避ける。
 U8 容器に充てんした試料の高さは 50 mm であるが、使用時に必ず高さを測定すること。
 特に JSAC 0784 は微粒子を含むため注意する。
- JSAC 0782 及び JSAC 0783 を用いたγ線測定用においては, 適切な放射能測定用の容器に 詰めかえて用いる. 採取量は 72 g以上を推奨とし, 測定容器に詰めた試料の質量を精確に 測定し, 記録すること.

測定容器に詰めかえる際は、あまり強く押し込まないように均質に充てんする.

- 3. JSAC 0784 及び JSAC 0785 を用いた ⁹⁰Sr の分析においては、採取量を5g以上とする.
- 4. 本標準物質は、放射性核種を含むため取扱いに注意し、廃棄の際には関連法規を遵守する.

保管上の注意及び認証値の安定性

本標準物質は、デシケータに入れて冷暗所に保管する.

日本分析化学会では定期的に安定性試験を行い、その結果から有効保存期間及び有効保存期 限を決めて、学会の会誌又はウエブサイト等に公表するので、参照すること.

標準物質の調製方法及び均質性評価

放射性物質で汚染された生魚(コモンカスベ)を,蒸気で加熱して肉部と骨部に分離し,肉部は 105 ℃で2日~3日間乾燥し,骨部は同様に乾燥した後 500 ℃,48時間で灰化した.肉部は製粉機にて,骨部はフードミルにて粉砕し,電磁振動ふるい分け器にて,肉部は1 mm 以下,骨部は 0.5 mm 以下にふるい分けした後,各々を V 型混合機にて十分な均質性が得られるように混合した. 瓶詰は次の通りである.

魚肉: U8 容器(72.0 g), 100 mL 容器(74 g), 1 L 容器(740 g),

2015.3

魚骨: U8 容器(97.0 g), 100 mL 容器(70 g).

瓶詰後に、20 kGy のγ線照射による滅菌を行い候補標準物質とした.

¹³⁴Cs, ¹³⁷Cs 及び ⁴⁰K 放射能分析用候補標準物質の均質性試験は,魚肉 12 試料又は魚骨 10 試料を用いて放射能濃度測定及び化学分析により実施した.

⁹⁰Sr 放射能分析用候補標準物質の均質性は、10 試料による安定ストロンチウムの化学分析、 及び¹³⁴Cs、¹³⁷Cs の放射能測定の結果を総合的に判断して決定した.

評価された均質性は合成標準不確かさに含めた.

105 ℃, 5 時間の乾燥による試料の質量の減少を測定したところ, 魚肉部では 2.6 %, 魚骨部 では 0.46 %の質量であった.

認証値の決定方法

¹³⁴Cs, ¹³⁷Cs 及び ⁴⁰K の認証値は, Ge 半導体検出器を用いた γ 線スペクトロメトリー^{文献1})に よる共同実験結果を用いて得られた. 魚肉では 14 試験所,魚骨では 9 試験所の参加を得た. 認 証値は報告値の平均値であり(棄却したデータはなかった),拡張不確かさは,共同実験の平 均値,検出効率校正,自己吸収補正及び均質性試験から推定された標準不確かさを合成して包 含係数を乗じて算出した.

魚骨部の⁹⁰Sr の認証値は,放射性ストロンチウム分析法^{文献2)}等に基づき 12 試験所による 14 データの共同実験結果を平均して得たものである. 拡張不確かさは,共同実験の平均値,検出 効率及び均質性試験から推定された標準不確かさを合成して包含係数を乗じて算出した.

また、認証値には室間再現標準偏差(SD)を記載した.

データの統計処理は、JIS Q 0035 に準拠した.

共同実験の実施期間

共同実験は 2014年12月から 2015年2月の間に行われた.

計量トレーサビリティ

測定器の校正には計量トレーサビリティが確保された手順が用いられた. すなわち,国家標 準へのトレーサビリティが取れた標準線源が用いられた. なお,一部の試験所では学術的 40K 核データが用いられた.

認証日付 2015年3月19日

認証値決定に協力した分析機関

東京都市大学原子力研究所 東京都市大学工学部 明治大学理工学部 京都大学原子炉実験所 東京大学アイソトープ総合センター 茨城大学広域水圏環境科学教育研究センター 金沢大学理工研究域物質化学系 国立医薬品食品衛生研究所 気象研究所 福島県原子力センター 茨城県環境放射線監視センター (公財)日本分析センター (公社)日本アイソトープ協会

- (一財)日本食品分析センター
 (一財)九州環境管理協会
 (独)産業技術総合研究所
 (独)放射線医学総合研究所
 (独)日本原子力研究開発機構先端基礎研究センター
 (独)日本原子力研究開発機構バックエンド研究開発部門
 (独)農業環境技術研究所
 (独)水産総合研究センター中央水産研究所
 エヌエス環境(株)
 (株)環境総合テクノス
 日本ハム(株)中央研究所
- (株)化研

以上 25 機関

- 生産及び頒布機関 公益社団法人 日本分析化学会
- 調製・均質性試験機関
 株式会社環境総合テクノス
 (大阪市中央区安土町1-3-5)

 環境テクノス株式会社
 (北九州市戸畑区中原新町2-4)

 東京都市大学原子力研究所
 (川崎市麻生区王禅寺 971)

 埼玉大学大学院理工学研究科
 (さいたま市桜区下大久保 255)
- 認証責任者
 公益社団法人
 日本分析化学会

 標準物質委員会
 委員長
 上本 道久

作業委員会: 放射能標準物質作製委員会

	氏名	所 属
委員長	平井 昭司	東京都市大学
委員	薬袋 佳孝	武蔵大学
委員	岡田 往子	東京都市大学
委員	米澤 仲四郎	(公財)日本国際問題研究所
委員	三浦 勉	(独)産業技術総合研究所
委員	植松 慶生	(公財)日本適合性認定協会
委員	岡田 章	東芝環境ソリューション(株)
事務局	柿田 和俊	(公社)日本分析化学会
事務局	小島 勇夫	(公社)日本分析化学会

	氏名	所属
リーダー	薬袋 佳孝	武蔵大学
サブリーダー	岩本 浩	環境テクノス(株)
委員	米澤 仲四郎	(公財)日本国際問題研究所
委員	三浦 勉	(独) 産業技術総合研究所
委員	渋川 雅美	埼玉大学大学院
委員	真田 哲也	北海道科学大学
委員	高貝 慶隆	福島大学
委員	荒川 史博	日本ハム(株)中央研究所
アドバイザー	千葉光一	(独) 産業技術総合研究所
アドバイザー	前山 健司	(公財)日本分析センター
アドバイザー	山田 崇裕	(公社)日本アイソトープ協会
事務局	柿田 和俊	(公社)日本分析化学会
事務局	小島 勇夫	(公社)日本分析化学会

受託事業	放射能環境標準物質開発委員会
	22222222222222222222222222222222222222

本認証書の詳細については開発成果報告書を参照のこと.

文献 1) 文部科学省 放射能測定シリーズ No.7「ゲルマニウム半導体検出器によるガンマ線 スペクトロメトリー」, 平成4年改訂

 $http://www.kankyo-hoshano.go.jp/series/main_pdf_series_7.html$

文献 2) 文部科学省 放射能測定法シリーズ No.2「放射性ストロンチウム分析法」, 平成 15 年改訂

http://www.kankyo-hoshano.go.jp/series/main_pdf_series_2.html

問合せ先
 公益社団法人 日本分析化学会
 〒141-0031 東京都品川区西五反田1丁目26-2
 五反田サンハイツ 304 号
 Tel. 03(3490)3351
 Fax 03(3490)3572
 ホームページ: http://www.jsac.or.jp/srm/srm.html
 e-mail: crmpt@ml.jsac.or.jp

付記:本認証標準物質は,独立行政法人科学技術振興機構による研究成果展開事業(先端計測分析技術・ 機器開発プログラム)として受託し,2014年度に開発されたものである.ただし,当該委託費には,認 証した標準物質の保存・頒布等に要する費用(管理費を含む)は含まれていない.